Thursday, April 17, 2008

STLD ONLINE 8

1 . T h e P r og r am m a b l e L o gi c A r r ay c o n s i s t s of ( a) P r o gr a mm a b l e OR , fi x e d A N D ga t e s ( b ) P r o gr a mm a b l e OR a n d A N D g a te s ( c ) fi x e d O R an d A N D g at e s ( d ) P r o gr a mm a b l e A N D , fi x e d O R ga t e s

2 . A P RO M ( a) E r a s ab l e by u t rav i ol e t ra d i at i o n ( b ) C a n b e p r og r am m e d on l y o n c e ( c ) i s m as k p ro g ra m m e d ( d ) p r og r am m e d by u s e r

3 . T h e ad d r e s s b u s w i d t h o f a ROM of s i z e 10 2 4 ×8 b i ts i s ( a) 1 2 b i ts ( b ) 8 b i t s ( c ) 1 0 b i ts ( d ) 1 1 b i ts

4 . A U n a t e f u n c t i on m ay b e ( a) p o s i t i ve o r n e ga t i ve i n a ny c o mb i n a t i on of i t s var i a b l e s ( b ) n e g at i ve i n s om e o f i t s va ri a b l e s ( c ) p o s i t i ve o r n e ga t i ve i n a l l o f i t s va r i ab l e s ( d ) p o s i t i ve i n s om e of i t s var i a b l e s

5 . T h e we i g ht s as s i gn e d t o th e va r i ab l e s o f a t h r e s h o l d f u n c t i o n a r e ( a) a re r e a l , fi n i t e , p o s i t i ve a n d n e g at i ve ( b ) R e al ( c ) C o m p l e x ( d ) a re i n fi n i t e

6 . S e q u e nt i al c i r c u i t s a r e c l a s s i fi e d i n ( a) T h r e e Ways ( b ) F i ve Way s ( c ) Fo u r Way s ( d ) T wo Way s

7 . M a s t e r F l i p F l op i s ( a) L e ve l t r i gg e r e d ( b ) C u r r e nt t ri g g e r e d ( c ) P u l s e t r i gg e r e d ( d ) E d g e Tr i gg e r e d

8 . T h e ou t p u t i n a D fl i p fl op i s — — — — — – w h e n c l o ck i s p r e s e nt . ( a) o u tp u t i s a l way s 0 ( b ) S a m e a s D ( c ) o u tp u t i s a l way s 1 ( d ) C o m p l i m e nt of D

9 . A b i n a r y c o u nt e r m ake s u s e o f — — — — — fl i p fl op s . ( a) D ( b ) R S ( c ) J K ( d ) T

1 0. A j oh n s o n c ou nt e r i s al s o c al l e d as — — — — — — — . ( a) D i r e c t c o u nte r ( b ) D i r e c t f e e d b ack c ou nt e r ( c ) I nve r s e f e e d b a ck c ou nt e r ( d ) I nve r s e c ou nt e r

1 1. A s e q u e nti a l c i rc ui t w i t h 1 0 s t at e s w i l l h ave ( a) 1 0 F l i p - F l o p s ( b ) 4 F l i p - F l o p s ( c ) 5 F l i p - F l o p s ( d ) 0 F l i p - F l o p s

1 2. T h e ou t p u t o f a c l o cke d s e q u e nti a l c i rc u i t i s i n d e p e n d e nt o f t h e i n p u t . T h i s c i r c u i t c an b e r e p r e s e nt e d by ( a) M o o re M o d e l ( b ) N e i t h e r M e al y n or M o o r e m o d e l ( c ) E i t h e r M e al y or M o o r e m o d e l ( d ) M e a l y M o d e l

1 3. I f an i n p u t s e q u e n c e y - ta ke s a m a ch i n e f ro m s ta t e A t o s t at e B t h e n B i s s a i d t o b e A ‘ s ( a) γ- s u c c e s s o r ( b ) γ- d i s ti n g u i s h a b l e ( c ) n e i t h e r y s u c c e s s or n o r d i s t i n g u i s h a b l e n o r e q u i va l e nt ( d ) γ- e qu i val e nt

1 4. T h e e x am p l e of a M o o re m a chi n e i s ( a) H a l f a d d e r ( b ) B i n a r y C o u nt e r ( c ) B C D C o u nt e r s ( d ) S e q u e n c e d e t e c t o r

1 5. I f we ch o s e d as h e s a s 0 w h i ch o f t h e s e s t a te s i s e q u i va l e nt P S N S , O u tp u t X = 0 X = 1 A C , 1 E , 1 B C , - E , 1 C B , 0 A , 1 D D , 0 E , 1 E D , 1 A , 0 ( a) AC D ( b ) A D E ( c ) A B D ( d ) B C D

1 6. A n A S M ch a rt c an b e ( a) i m p l e m e nt e d u s i n g ga t e s & fl i p - fl op s ( b ) c o nve r t e d i nt o a s t a te d i a gr am ( c ) c o nve r t e d t o a s t a t e d i a gr a m & t ab l e a n d i m p l e m e nt e d a s a F li p - F l op ( d ) c o nve r t e d i nt o a s t a te t ab l e

1 7. W h i ch o f th e t h e s e i s t r u e ( a) a n A S M ch ar t o f t h e m e al y m o d e l c o nt a i n s o n l y s t a t e b oxe s ( b ) a n A S M ch ar t o f t h e m e al y m o d e l d o e s n o t c o nt ai n c on d i t i o n al ou t p u t b oxe s ( c ) a n A S M ch ar t o f t h e m e al y m o d e l d o e s n o t c o nt ai n c on d i t i o n al ou t p u t b oxe s n o r s t a te b ox e s ( d ) a n A S M ch ar t o f t h e m e al y m o d e l c o nt a i n s c on d i t i on a l o u t p u t b oxe s

1 8. T h e c o m pl e te c l a s s e s i n c ol u m n E a re P S N S O /P I 1 I 2 A E , 0 B , 0 B , 0 B F , 0 A , 0 C E , - C , 0 D F , 1 D , 0 E C , 1 C , 0 f D , - B , 0 E F B C AC , E F X X E F X X C u r r e c t C D , E F D E X B C , DE X B C , C D ( a) C D E ( b ) E F ( c ) D E ( d ) A B C

1 9. T h e p r og ra m t a b l e o f P L A i n t h e mu l t i p l i e r i s o b t ai n e d f r om ( a) A S M ch ar t ( b ) s t a te t ab l e ( c ) M e r g e r ch a r t ( d ) t r an s i t i o n t ab l e

2 0. I n a on e fl i p - fl o p p e r s t at e m e t h o d th e B o o l e a n f u n c t i o n f o r s e t t i n g t h e fl i p - fl op i s d e t e r m i n e d by ( a) r e s e t i n p u t ( b ) o u tp u t c on d i t i o n ( c ) i n p u t c o n d i t i on ( d ) p r e s e nt s ta t e , i n p u t c o n d i t i on on d i r e c te d l i n e

BBCAA DCBDC BAADB CDBBD

No comments:

About Me