Thursday, April 17, 2008

STLD ONLINE 11

1 . T h e P RO M c on s i s t s o f ( a) P r o gr a mm a b l e OR , fi x e d A N D ga t e s ( b ) fi x e d O R an d A N D g at e s ( c ) P r o gr a mm a b l e A N D , fi x e d O R ga t e s ( d ) P r o gr a mm a b l e OR a n d A N D g a te s

2 . W h e n th e p owe r s u p p l y o f a ROM i s s w i t ch e d o ff , i t s c o nt e nt s , ( a) b e c om e al l z e r o e s ( b ) a re u n p r e d i c t ab l e ( c ) b e c om e al l on e s ( d ) r e m a i n i nta c t

3 . A ROM h a s 1 6 ad d r e s s l i n e s an d 8 d at a l i n e s . I t i s or g an i z e d a s ( a) 6 4K × 8 ( b ) 1 28 K × 4 ( c ) 6 4K × 1 6 ( d ) 3 2K × 1 6

4 . A s w i t ch i n g f u n c t i o n Y c an b e d e c o m p o s e d i nt o two th r e s h ol d f un c ti o n s f 1 a n d f 2 . T h e f u n c t i on Y c an b e i m p l e m e nt e d u s i n g ( a) 2 t h r e s h o l d e l e m e nt s i nt e r c o n n e c t e d to p e r f or m N A N D op e ra t i on s ( b ) 2 t h r e s h o l d e l e m e nt s i nt e r c o n n e c t e d to p e r f or m O R o p e r at i o n s ( c ) 2 t h r e s h o l d e l e m e nt s i nt e r c o n n e c t e d to p e r f or m N O R o p e r at i o n s ( d ) 1 t h r e s h o l d e l e m e nt

5 . T h e p ar a m e t e r s o f a t h r e s h o l d e l e m e nt ar e ( a) we i g hts a s s i g n e d t o i n p u t va r i ab l e s a n d T ( b ) n e i t h e r i n p u t , n o r o u t p ut va ri a b l e s n or T va l u e s ( c ) we i g hts a s s i g n e d t o i n p u t va r i ab l e s ( d ) va l u e of T

6 . R ac e a ro u n d c o n d i t i on o c c u r s i n J K F l i p - F l op s w h e n ( a) O n e o f t h e i n p u t c o mb i n a t i on s ( 0 , 1) i s p r e s e nt ( b ) t h e i n p u t s ar e c om p l e m e nta r y ( c ) b o t h t h e i n p u t s ar e 0 ( d ) b o t h t h e i n p u t s ar e 1

7 . I f t s e t u p = s e t u p t i m e , t p d = p r op a ga t i on d e l ay t i m e , t n s = n e x t s t at e d e c o d e r d e l ay, t h e n m a x i mu m f r e q u e n c y o f e d g e t r i g ge r e d fl i p fl o p i s ( a) 1 /( t s e t u p + t n s ) ( b ) 1 /( t p d + t n s ) ( c ) 1 /( t s e t u p + t n s + t p d ) ( d ) 1 /( t s e t u p + t p d )

8 . W h i ch o f th e f o l l ow i n g i n p u t c o mb i n at i o n s i s n o t u s e d i n a RS fl i p fl op ? ( a) S = 0 , R = 1 ( b ) S = 0 , R = 0 ( c ) S = 1 , R = 1 ( d ) S = 1 , R = 0

9 . A s e q u e nti a l c i rc u i t w i t h m fl i p fl o p s a n d n i n p u t s n e e ds — — — - r ow s i n t he s t a te t ab l e . ( a) 2 m -n -1 ( b ) 2 m ( c ) 2 m + n ( d ) 2 n

1 0. A j oh n s o n c ou nt e r i s al s o c al l e d as — — — — — — — . ( a) I nve r s e c ou nt e r ( b ) I nve r s e f e e d b a ck c ou nt e r ( c ) D i r e c t c o u nte r ( d ) D i r e c t f e e d b ack c ou nt e r

1 1. T h e nu mb e r of d i r e c t e d ar c s e m an a t i n g f r om any s t a t e i n a s t at e d i a g ra m i s ( a) a n a rb i t r ar y nu mb e r ( b ) 2 n w h e r e n i s nu mb e r of F l i p - F l o p s i n t h e c i r c u i t ( c ) i n d e p e n de nt of t h e nu mb e r o f i n p u t s ( d ) 2 n , w h e re n i s t h e nu mb e r o f i n p u ts

1 2. W h i l e c on s tr u c t i n g a s t a te d i a gr a m of a s e q u e nt i a l c i r c u i t f r o m t h e s e t o f g i ve n s t a te m e nts ( a) r e d u n d a nt s ta t e s mu s t b e avoi d e d ( b ) m i n i mu m nu mb e r o f s ta t e s mu s t on l y b e u s e d ( c ) O n l y i n p u t s t at e s mu s t b e u s e d ( d ) r e d u n d a nt s ta t e s mu s t b e u s e d

1 3. Fo r a 8 s t a t e m a ch i n e i f P 4 = ( A ) ( B ) ( C D ) ( E FG ) (H ) th e n i t s P3 p a rt i t i on m ay b e ( a) ( A B ) ( C D ) ( E F ) (G H ) ( b ) ( C D ) ( A ) ( B ) ( E FG ) (H ) ( c ) ( A B C ) (D E F ) (G H ) ( d ) ( A B ) ( C D ) ( E H ) (FG )

1 4. T h e e x am p l e of a M e a l y m a ch i n e i s ( a) S e r i a l A d d e r ( b ) B i n a r y C o u nt e r ( c ) H a l f a d d e r ( d ) S e q u e n c e d e t e c t o r

1 5. D i s t i n gu i s h i n g s e q u e n c e f or s t at e s A a n d F P r e s e nt S ta t e N e x t S t a te X = 0 O u tp u t X = 1 A E , 0 C , 0 B C , 0 A , 0 C B , 0 B , 0 D G , 0 A , 0 E F , 1 B , 0 F E , 0 D , 0 G D , 0 G , 0 ( a) 0 00 ( b ) 0 10 0 ( c ) 0 11 10 ( d ) 1 01 1

1 6. A n A l g o ri t h m i c S ta t e m a ch i n e i s s a m e a s ( a) c l o cke d s e qu e nt i a l c i r c u i t ( b ) s y n ch r on o u s c l o cke d s e q u e nt i al fi n it e s t at e m ach i n e ( c ) fi n i t e s ta t e m a ch i n e ( d ) s y n ch r on o u s s e q u e nti a l c i rc u i t

1 7. A n a s m ch ar t o f t h e m e al y m o d e l ( a) c o nta i n s on l y s ta t e a n d d e c i s i on b ox e s ( b ) d o e s n ot c ont ai n c on d i t i o n al ou t p u t b ox ( c ) o u tp u t s ar e re p re s e nt e d by w r i t i n g ou t p u t s ta t e var i a b l e i n s i d e s t a te b ox ( d ) c o nta i n s c on d i t i o n al ou t p u t b ox

1 8. W h i ch o f t h e f o l l ow i n g i s t ru e ( a) A p a r t i ti o n P i s s ai d t o b e a r e fi n e m e nt o f p ar t i t i on Q i f P i s 5 ( b ) A p a r t i ti o n P i s s ai d to b e a r e fi n e m e nt o f p ar t i t i on Q i f P i s g r e at e r th a n Q ( c ) A p a r t i ti o n P i s s ai d to b e a r e fi n e m e nt o f p ar t i t i on Q i f P i s 1 90 ( d ) A p a r t i ti o n P i s s ai d to b e a r e fi n e m e nt o f p ar t i t i on Q i f P i s s m a l l e r t h a n Q

1 9. A p r o gr a m t ab l e i s u s e d f or ( a) M e r g e r t a b l e ( b ) A S M ( c ) P L A ’ s ( d ) Pa rt i t i o n t ab l e s

2 0. t h e fi g u r e 2 0 i s a F i g u re 2 0 ( a) s t a te t ab l e ( b ) fl ow t ab l e ( c ) a s m ch a r t ( d ) m e r g e r t ab l e

ADABA DCCCB DDBBD BDBCB

No comments:

About Me