Thursday, April 17, 2008

STLD ONLINE 19

1 . T h e P RO M c on s i s t s o f ( a) P r o gr a mm a b l e A N D , fi x e d O R ga t e s ( b ) fi x e d O R an d A N D g at e s ( c ) P r o gr a mm a b l e OR , fi x e d A N D ga t e s ( d ) P r o gr a mm a b l e OR a n d A N D g a te s

2 . A f u n c t i on ta b l e i s r e q u i r e d i n ve r y l a r ge nu mb e rs . T h e m e m or y m o s t s u i t a b l e f or t h i s p u rp os e i s ( a) E P ROM ( b ) RO M ( c ) P ROM ( d ) E A ROM

3 . w h i ch on e of t h e s e RO M S h a s 8 b i t d a t a b u s ( a) 2 K × 1 6 ( b ) 2 K × 4 ( c ) 8 K × 1 6 ( d ) 8 K × 8

4 . T h r e s h o l d f un c ti o n i s r e a l i z e d u s in g ( a) M u l t i p l e th r e s ho l d e l e m e nt s ( b ) U n k n ow n numb e r of t h r e s h o l d e l e m e nt s ( c ) a s i n g l e t h r e s h o l d e l e m e nt ( d ) T wo t h r e s h o l d e l e m e nt s

5 . T h e p ar a m e t e r s o f a t h r e s h o l d e l e m e nt ar e ( a) va l u e of T ( b ) we i g hts a s s i g n e d t o i n p u t va r i ab l e s a n d T ( c ) n e i t h e r i n p u t , n o r o u t p ut va ri a b l e s n or T va l u e s ( d ) we i g hts a s s i g n e d t o i n p u t va r i ab l e s

6 . I n a c ou nt e r c on s i s t i n g o f f ou r J K fl i p F l op s , al l t h e F l i p F l op s g e t t ri g g e r e d s i mu l t a n e o u s l y. T h i s c ou nt e r c i r c u i t i s ( a) i s a c omb i n a ti o n a l c i r c u i t ( b ) m ay b e c o mb i n at i o n al or s e q u e nti a l c i rc u i t ( c ) i s a s y n ch ro n o us c i r c u i t ( d ) i s an as y n ch r o no u s c i r c u i t

7 . I f t s e t u p = s e t u p t i m e , t p d = p r op a ga t i on d e l ay t i m e , t n s = n e x t s t at e d e c o d e r d e l ay, t h e n m a x i mu m f r e q u e n c y o f e d g e t r i g ge r e d fl i p fl o p i s ( a) 1 /( t s e t u p + t p d ) ( b ) 1 /( t s e t u p + t n s ) ( c ) 1 /( t s e t u p + t n s + t p d ) ( d ) 1 /( t p d + t n s )

8 . I n c onve r t i n g J K fl i p fl o p t o T fl i p fl o p , T i n p u t i n t e r m s of J , K a n d t h e ou t p u t y i s — — — — — — — - . ( a) J y +K y ( b ) J y /K y ( c ) ( J +K )y ’ ( d ) J y +K y’

9 . A s e q u e nti a l c i rc u i t w i t h m fl i p fl o p s a n d n i n p u t s n e e ds — — — - r ow s i n t he s t a te t ab l e . ( a) 2 m ( b ) 2 m -n -1 ( c ) 2 m + n ( d ) 2 n

1 0. A r i n g c o u nt e r i s u s e f u l i n ge n e r at i n g — — — — — - . ( a) P s e u d or a n d om p a t t e r n g e n e r at i o n ( b ) Fr e q u e n c y s c a l i n g ( c ) T i m i n g s i g n al s ( d ) R e f r e s h ad d r e s s o f D R A M

1 1. T h e nu mb e r of d i r e c t e d ar c s e m an a t i n g f r om any s t a t e i n a s t at e d i a g ra m i s ( a) 2 n , w h e r e n is t h e nu mb e r of i n p u ts ( b ) 2 n w h e r e n i s nu mb e r of F l i p - F l o p s i n t h e c i r c u i t ( c ) a n a rb i t r ar y nu mb e r ( d ) i n d e p e n de nt of t h e nu mb e r o f i n p u t s

1 2. I f n i s t h e nu mb e r of s t at e s i n a m a ch i n e M an d A a n d B a r e two d i s ti n g u i s h a b l e t h e n t h e y ar e d i s ti n g u i s h a b l e by a s e q u e n c e o f ( a) ( n - 1 ) o r l e s s ( b ) n o r l e s s ( c ) ( n +1 ) ( d ) d o e s n ot d e p e n d o n n

1 3. D i s s u c c e s s o r o f A (s h ow n i n fi gu r e 13 ) F i g u re 13 ( a) 1 01 ( b ) 0 ( c ) 1 11 ( d ) 1

1 4. A s e q u e nti a l c i rc ui t w i t h 0 6 s t at e s r e q ui r e s ( a) 3 fl i p fl o p s ( b ) 6 fl i p fl o p s ( c ) 6 4 fl i p fl op s ( d ) 1 0 fl i p fl op s

1 5. D i s t i n gu i s h i n g s e q u e n c e f or s t at e s A a n d F P r e s e nt S ta t e N e x t S t a te X = 0 O u tp u t X = 1 A E , 0 C , 0 B C , 0 A , 0 C B , 0 B , 0 D G , 0 A , 0 E F , 1 B , 0 F E , 0 D , 0 G D , 0 G , 0 ( a) 0 11 10 ( b ) 0 00 ( c ) 0 10 0 ( d ) 1 01 1

1 6. A n A S M C h a r t c on s i s t s o f ( a) o n l y d e c i s i o n a n d c o n d i t i on a l o u t p u t b ox e s ( b ) s t a te , d e c i s i on an d c on d i t i o n al ou t p u t b oxe s ( c ) o n l y s t at e b ox e s ( d ) o n l y d e c i s i o n b ox e s

1 7. A d e c i s i o n b ox i n a n a s m ch a rt ( a) h a s o n e e nt r y a n d o n e e x i t p a t h ( b ) h a s two e x i t p at h s ( c ) h a s o n l y o n e e x i t p a t h ( d ) d o e s n ot h ave e x i t p a th s

1 8. I n a m e r ge r t a b l e c om p a ti b i l i ty i s i n d i c a te d by ( a) X ( b ) C o r re c t ( c ) 0 ( d ) -

1 9. I n a c ont r ol s y s t e m t h e nu mb e r of fl i p fl o p s u s e d p e r s t at e i s ( a) 1 ( b ) 3 ( c ) 6 ( d ) 8

2 0. I n a on e fl i p - fl o p p e r s t at e me th o d th e B o o l e an f u n c t i o n f o r s e t t i n g t h e fl i p - fl op i s d e t e r m i n e d by ( a) o u tp u t c on d i t i o n ( b ) i n p u t c o n d i t i on ( c ) r e s e t i n p u t ( d ) p r e s e nt s ta t e , i n p u t c o n d i t i on on d i r e c te d l i n e

CBDCB CCACC AABAD BBBAD

No comments:

About Me