1 . A p a t t e rn of g at e s f ab r i c a t e d o n a n a r e a of s i l i c o n t h a t i s r e p e at e d t h o u s a n d s o f t i m e s u nti l t h e ch i p i s c ove r e d w i t h i d e nt i c al e l e m e nt s i s c a l l e d ( a) N A N D G at e ( b ) N O R ga t e ( c ) M u l t i p l e x or ( d ) G a t e A r r ay
2 . Fu s i b l e l i n k i s a s s o c i a te d w i t h ( a) E A R O M ( b ) P R O M ( c ) R O M ( d ) E P R O M
3 . w h i ch on e of t h e s e RO M S h a s 8 b i t d a t a b u s ( a) 2 K × 4 ( b ) 8 K × 8 ( c ) 8 K × 1 6 ( d ) 2 K × 1 6
4 . T h r e s h o l d f un c ti o n i s r e a l i z e d u s in g ( a) U n k n ow n numb e r of t h r e s h o l d e l e m e nt s ( b ) a s i n g l e t h r e s h o l d e l e m e nt ( c ) M u l t i p l e th r e s ho l d e l e m e nt s ( d ) T wo t h r e s h o l d e l e m e nt s
5 . A t h r e s h o l d f u n c ti o n ( a) i s n ot a u n i t e f u n c t i on ( b ) i s al ways a u n i t e f u n c ti o n ( c ) m ay or m ay n ot b e a u n i t e f u n c t i on ( d ) m ay b e a u n i t e f u n c t i on
6 . R ac e a ro u n d c o n d i t i on o c c u r s i n J K F l i p - F l op s w h e n ( a) b o t h t h e i n p u t s ar e 1 ( b ) t h e i n p u t s ar e c om p l e m e nta r y ( c ) O n e o f t h e i n p u t c o mb i n a t i on s ( 0 , 1) i s p r e s e nt ( d ) b o t h t h e i n p u t s ar e 0
7 . A s e q u e nti a l c i rc u i t d o e s n o t u s e c l o ck p u l s e s . I t i s ( a) a rr ay ( b ) a n A s y n ch r on o u s Se qu e nt i a l c i r c u i t ( c ) a S y n ch ro n o u s S e q u e nt i a l C i r c u i t ( d ) a C o u nte r
8 . W h e n t h e p r e s e nt va l u e of t h e ou t p u t y( t ) a n d th e T va l u e ar e k n ow n i n a T fl i p fl o p , t h e n e x t s t a te y ( t +1 ) i s — — — — — — — — — - . ( a) T XO R y ( t) ( b ) T X N OR y ( t ) ( c ) T OR y ( t ) ( d ) T A N D y (t )
9 . T h e nu mb e r of fl i p fl o p s f o r a s y n ch r on o u s c i r c u i t i s de te rm i n e d by — — — — - . ( a) T h e nu mb e r of i n p u t s g i ve n ( b ) T h e nu mb e r of g at e s r e q u i re d ( c ) T h e nu mb e r of i n p u t s a n d g at e s p u t t o ge t h e r ( d ) T h e nu mb e r of s t a te s n e e d e d i n t h e c i r c u i t
1 0. I f 2K t i m i n g s i g n al s ar e ge n e ra t e d by a J o h n s o n c o u nte r t h e n i t i s a — — — — — . ( a) K b i t Ri n g c ou nt e r . ( b ) 2 K b i t J o h n s o n c o u nte r. ( c ) K b i t J oh n s on c ou nt e r . ( d ) 2 K b i t R i n g c o u nt e r .
1 1. T h e s e r i a l a d de rs u s e ( a) s i m p l e s h i f t r e g i s t e r s ( b ) Pa ra l l e l l oa d s h i f t re gi s t e r s ( c ) mu l t i p l e xe rs ( d ) c o u nte rs
1 2. I n a s e q u e nt i al c i rc u i t d e s i g n s t a t e r e d u c t i o n i s d on e f o r d e s i g n i n g th e c i r c u i t w i t h ( a) m i n i mu m nu mb e r o f F l i p F l o p s ( b ) m i n i mu m nu mb e r o f g a te s ( c ) m i n i mu m nu mb e r o f g a te s a n d m e m o r y l o c at i o n s ( d ) O n e g at e on l y
1 3. E i s s u c c e s s o r o f A (s h ow n i n fi gu r e 13 ) F i g u re 13 ( a) 1 1 ( b ) 0 1 ( c ) 0 0 ( d ) 1 0
1 4. T h e d e s i g n o f a c l o cke d s e q u e nti a l c i r c u i t re qu i r e s ( a) T h e A s s i g n m e nt & Re d u c t i on of s t at e s a n d n e x t d e c o d e r s d e s i g n ( b ) T h e s t at e r e d u c t i on ( c ) T h e s t at e as s i gn m e nt ( d ) t h e d e s i gn of n e x t d e c o d e r
1 5. D i s t i n gu i s h i n g s e q u e n c e f or s t at e s A a n d F P r e s e nt S ta t e N e x t S t a te X = 0 O u tp u t X = 1 A E , 0 C , 0 B C , 0 A , 0 C B , 0 B , 0 D G , 0 A , 0 E F , 1 B , 0 F E , 0 D , 0 G D , 0 G , 0 ( a) 1 01 1 ( b ) 0 11 10 ( c ) 0 10 0 ( d ) 0 00
1 6. T h e A S M ch a r t s y mb ol on t h e r i ght r e p r e s e nts a ( s h ow n i n fi g u r e 1 6) F i g u re 16 ( a) a s t a te b ox ( b ) O u tp u t B ox ( c ) a c o n d i t i on a l o u tp u t b ox ( d ) a d e c i s i on b ox
1 7. a s m ch a rt re p re s e nt s ( a) P L A s ( b ) g at e s ( c ) S y n ch r on o u s s e qu e nt i a l c i r c u i t s ( d ) M u l t i p l e x e r s
1 8. I n a m e r ge r t a b l e c om p a ti b i l i ty i s i n d i c a te d by ( a) 0 ( b ) C o r re c t ( c ) - ( d ) X
1 9. I n a c ont r ol u n i t t h e n e x t s t a t e i s d e t e r m i n e d by ( a) d e c o d e r s ( b ) fl i p fl o p s ( c ) g at e s ( d ) mu l t i p l e x or s
2 0. t h e fi g u r e 2 0 i s a F i g u re 2 0 ( a) s t a te t ab l e ( b ) a s m ch a r t ( c ) fl ow t ab l e ( d ) m e r g e r t ab l e
DBBBB ABADC BACDA DCBCC
No comments:
Post a Comment