1 . I f a RO M i s or g an i z e d a s 1 6 b i t wor d s a n d c ont ai n s 2 5 6 wo rd s t h e n t h e c a p ac i ty of t h e ROM i s 2 04 8 b i t s , th e nu mb e r o f 4 b i t w i d e wo rd s i s ( a) 2 56 ( b ) 8 19 ( c ) 4 09 6 ( d ) 5 12
2 . A f u n c t i on ta b l e i s r e q u i r e d i n ve r y l a r ge nu mb e rs . T h e m e m or y m o s t s u i t a b l e f or t h i s p u rp os e i s ( a) RO M ( b ) P ROM ( c ) E A ROM ( d ) E P ROM
3 . 8 R A M ch i p s of 1 6 ×4 s i z e h ave t h e i r b u s s e s s u ch t h a t t h e d a t a b u s i s 16 b i t s w i d e . T h i s s y s t e m m e m or y s i z e i s ( a) 1 6K × 4 ( b ) 2 56 K × 1 ( c ) 3 2K × 8 ( d ) 6 4K × 8
4 . T h r e s h o l d f un c ti o n i s r e a l i z e d u s in g ( a) U n k n ow n numb e r of t h r e s h o l d e l e m e nt s ( b ) a s i n g l e t h r e s h o l d e l e m e nt ( c ) T wo t h r e s h o l d e l e m e nt s ( d ) M u l t i p l e th r e s ho l d e l e m e nt s
5 . A t h r e s h o l d f u n c ti o n ( a) m ay b e a u n i t e f u n c t i on ( b ) i s n ot a u n i t e f u n c t i on ( c ) m ay or m ay n ot b e a u n i t e f u n c t i on ( d ) i s al ways a u n i t e f u n c ti o n
6 . A tw i s t e d r i n g c ou nt e r c o n s i s t i n g o f s i x F l i p F l o p s w i l l h ave ( a) 1 28 s t a t e s ( b ) 6 4 s t at e s ( c ) 1 2 s t at e s ( d ) 6 s t a te s
7 . I f t s e t u p = s e t u p t i m e , t p d = p r op a ga t i on d e l ay t i m e , t n s = n e x t s t at e d e c o d e r d e l ay, t h e n m a x i mu m f r e q u e n c y o f e d g e t r i g ge r e d fl i p fl o p i s ( a) 1 /( t s e t u p + t n s + t p d ) ( b ) 1 /( t s e t u p + t n s ) ( c ) 1 /( t s e t u p + t p d ) ( d ) 1 /( t p d + t n s )
8 . I n c onve r t i n g J K fl i p fl o p t o T fl i p fl o p , T i n p u t i n t e r m s of J , K a n d t h e ou t p u t y i s — — — — — — — - . ( a) ( J +K )y ’ ( b ) J y /K y ( c ) J y +K y’ ( d ) J y +K y
9 . A s e q u e nti a l c i rc u i t w i t h m fl i p fl o p s a n d n i n p u t s n e e ds — — — - r ow s i n t he s t a te t ab l e . ( a) 2 n ( b ) 2 m + n ( c ) 2 m ( d ) 2 m -n -1
1 0. I f 2K t i m i n g s i g n al s ar e ge n e ra t e d by a J o h n s o n c o u nte r t h e n i t i s a — — — — — . ( a) 2 K b i t R i n g c o u nt e r . ( b ) K b i t Ri n g c ou nt e r . ( c ) K b i t J oh n s on c ou nt e r . ( d ) 2 K b i t J o h n s o n c o u nte r.
1 1. T h e nu mb e r of d i r e c t e d ar c s te rm i n a t i n g on any s t a t e i n a s t at e di a g ra m i s ( a) d e p e n d e nt on th e nu mb e r o f o u t p u ts ( b ) 2 n w h e r e n i s t h e nu mb e r o f F l i p - F l op s ( c ) i n d e p e n de nt of t h e nu mb e r o f i n p u t s ( d ) 2 n , w h e re n i s t h e nu mb e r o f i n p u ts
1 2. T h e d e s i g n o f a C l o cke d s e q u e nti a l c i rc u i t r e q ui r e s ( a) r e q u i r e s t h e s t at e as s i gn m e nt , r e d u c ti o n a n d t h e n e xt s t at e d e c o d e r ( b ) t h e s ta t e r e d u c t i o n ( c ) T h e d e s i g n o f n e x t s ta t e d e c o de r ( d ) t h e s ta t e a s s i g n m e nt
1 3. B D i s s u c c e s s o r o f C D ( s how n i n fi gu r e 13 ) F i g u re 13 ( a) 1 11 ( b ) 1 01 ( c ) 1 10 0 ( d ) 0 1
1 4. A s e q u e nti a l c i rc ui t w i t h 0 6 s t at e s r e q ui r e s ( a) 6 fl i p fl o p s ( b ) 1 0 fl i p fl op s ( c ) 6 4 fl i p fl op s ( d ) 3 fl i p fl o p s
1 5. D i s t i n gu i s h i n g s e q u e n c e f or s t at e s B an d C P r e s e nt S ta t e N e x t S t a te X = 0 O u tp u t X = 1 A E , 0 C , 0 B C , 0 A , 0 C B , 0 B , 0 D G , 0 A , 0 E F , 1 B , 0 F E , 0 D , 0 G D , 0 G , 0 ( a) 0 01 ( b ) 0 00 ( c ) 1 11 ( d ) 1 10
1 6. M o o re Ty p e o f Ou t p u t s a r e ( a) i n d e p e n d e nt of t h e i n p u t s ( b ) D e p e n d e nt on p r e s e nt s t at e an d i n p u t ( c ) d e p e n d e nt on l y o n t h e i n p u ts ( d ) d e p e n d s o n t h e ty p e of h ar d wa re u s e d f o r i m p l e m e nt at i o n
1 7. A n a s m ch ar t o f t h e m e al y m o d e l ( a) o u tp u t s ar e re p re s e nt e d by w r i t i n g ou t p u t s ta t e var i a b l e i n s i d e s t a te b ox ( b ) d o e s n ot c ont ai n c on d i t i o n al ou t p u t b ox ( c ) c o nta i n s c on d i t i o n al ou t p u t b ox ( d ) c o nta i n s on l y s ta t e a n d d e c i s i on b ox e s
1 8. W h i ch o f t h e f o l l ow i n g i s t ru e ( a) s t a te s t h a t ar e n ot k d i s t i n gu i s h a b l e ar e s ai d to n o t k e qu i val e nt ( b ) s t a te s t h a t ar e n ot k d i s t i n gu i s h a b l e ar e s ai d to b e k e qu i val e nt ( c ) s t a te s t h a t ar e k d i s t i n gu i s h ab l e ar e s a i d t o b e k e q u i va l e nt ( d ) s t a te s t h a t ar e n ot k d i s t i n gu i s h a b l e ar e s ai d to n o t k e qu i val e nt
1 9. A p r o gr a m t ab l e i s u s e d f or ( a) A S M ( b ) M e r g e r t a b l e ( c ) Pa rt i t i o n t ab l e s ( d ) P L A ’ s
2 0. w h i ch o f th e s e i s t r u e ( a) I f s t at e s A = B , a n d B < > C th e n A = C ( b ) I f s t at e s A = B , a n d B =C t h e n A = C ( c ) I f s t at e s A = B , a n d B =D th e n A =C ( d ) I f s t at e s A < > B , an d B = C t h e n A =C
CADBD CADBC CADDA ACBDB
No comments:
Post a Comment