Thursday, April 17, 2008

STLD ONLINE 5

1 . 1 6 i n p u ts , 40 A N D ga t e s , 1 00 O R ga t e s ar e i n a P L A . T h e nu mb e r o f f u s e s t o b e p r o gr a m m e d i s ( a) 4 01 6 ( b ) 5 38 0 ( c ) 6 40 00 ( d ) 5 60 0

2 . A P LA c o n s i s t s o f ( a) I nve r t/ n o n i nve r t m at r i x ( b ) O R m at r i x ( c ) A N D , O R an d i nve r t / n on i nve r t m a t ri x ( d ) A N D m a t ri x

3 . A c ap a c i ty of a P L A i s s p e c i fi e d i n te rm s o f ( a) N u mb e r o f o u t p u t s o n l y ( b ) N u mb e r o f i n p u t s an d p r o d u c t te rm , an d ou t p u t s ( c ) N u mb e r o f i n p u t s an d ou t p u t s on l y ( d ) N u mb e r o f i n p u t s on l y

4 . T h e p ar a m e t e r s o f a t h r e s h o l d e l e m e nt ar e ( a) we i g hts a s s i g n e d t o i n p u t va r i ab l e s a n d T ( b ) va l u e of T ( c ) o u tp u t var i a b l e s ( d ) we i g hts a s s i g n e d t o i n p u t va r i ab l e s

5 . T h e we i g ht s as s i gn e d t o th e va r i ab l e s o f a t h r e s h o l d f u n c t i o n a r e ( a) a re r e a l , fi n i t e , p o s i t i ve a n d n e g at i ve ( b ) C o m p l e x ( c ) a re i n fi n i t e ( d ) R e al

6 . T h e s p e e d o f a S e q u e nt i al C i r c u i t c o m p ar e d to a c omb i n a ti o n al c i r c u i t i s ( a) Fa s t ( b ) S l ow ( c ) b e t t e r ( d ) E q u a l

7 . T h e c l o cke d s e q u e nt i al c i r c u i t c o m p ar e d w i t h a s y n ch ro n o u s s e qu e nt i a l c i r c u i t h a s ( a) F l i p F l o p s & C l o ck ( b ) n e i t h e r F l i p F l op s n or C l o ck ( c ) C o m p u l s o ry C l o ck ( d ) F l i p F l o p s ra t h e r t h an L at ch e s

8 . T h e ap p l i c a t i on s l i ke s e ri a l t o p a ra l l e l c onve r t e rs , d e l ay l i n e s u s e ( a) A s y n ch r on o u s c ou nt e r s ( b ) p u r e c omb i n at o r i al c i r c u i t ( c ) c o mb i n at or i a l c i r c u i t & Sh i f t r e gi s te r ( d ) S h i f t r e g i s t e r

9 . T h e t ab l e th a t c o n s i s t s of p r e s e nt s ta t e , i n p u t , o u t p u t , n e x t s t a te i s — — — . ( a) E x c i t a ti o n t a b l e ( b ) Tra n s i t i o n t ab l e ( c ) Tru t h ta b l e ( d ) S t at e t ab l e

1 0. A r i n g c o u nt e r i s o n e i n w h i ch ( a) O n l y on e fl i p fl op i s s e t w h i l e al l th e o th e rs a re c l e a r e d . ( b ) A l l t h e fl i p fl op s ar e s e t . ( c ) A l l t h e fl i p fl op s ar e c l e a r e d . ( d ) O n l y on e fl i p fl op i s c l e ar e d w h i l e a l l t h e ot h e r s ar e s e t .

1 1. S e r i a l a d d e rs a re u s e d b e c a u s e ( a) T h e y ar e s l ow ( b ) n e e d m or e w i r e s ( c ) T h e y ar e Fas t ( d ) n e e d l e s s nu mb e r of d e v i c e s

1 2. I f n i s t h e nu mb e r of s t at e s i n a m a ch i n e M an d A a n d B a r e two d i s ti n g u i s h a b l e t h e n t h e y ar e d i s ti n g u i s h a b l e by a s e q u e n c e o f ( a) d o e s n ot d e p e n d o n n ( b ) ( n +1 ) ( c ) n o r l e s s ( d ) ( n - 1 ) o r l e s s

1 3. T h e s t at e r e d u c t i on p ro c e s s i n t h e i n c o m p l e t e l y s p e c i fi e d m a ch i n e s c a n b e d on e by ( a) m e r g e r t ab l e an d ch ar t ( b ) n e i t h e r m e r g e r t a b l e n o r ch ar t ( c ) m e r g e r t ab l e ( d ) m e r g e r ch ar t

1 4. A s e q u e nti a l m a ch i n e i s ( a) o n e t u p l e ( b ) T wo t u p l e ( c ) Q u ad tu p l e ( d ) q u i ntu p l e

1 5. I f we ch o s e d as h e s a s 0 w h i ch o f t h e s e s t a te s i s e q u i va l e nt P S N S , O u tp u t X = 0 X = 1 A C , 1 E , 1 B C , - E , 1 C B , 0 A , 1 D D , 0 E , 1 E D , 1 A , 0 ( a) AC D ( b ) B C D ( c ) A B D ( d ) A D E

1 6. A n A S M ch a rt c an b e i m p l e m e nte d u s i n g F l i p - F l o p s an d ( a) G a t e s ( b ) P r o gr a m m ab l e Lo g i c D e v i c e s ( c ) M u l t i p l e x o rs ( d ) G a t e s , M u l t i p l e x o rs & P L D ‘ s

1 7. W h i ch o f th e t h e s e i s t r u e ( a) a n A S M ch ar t o f t h e m e al y m o d e l d o e s n o t c o nt ai n c on d i t i o n al ou t p u t b oxe s ( b ) a n A S M ch ar t o f t h e m e al y m o d e l c o nt a i n s o n l y s t a t e b oxe s ( c ) a n A S M ch ar t o f t h e m e al y m o d e l d o e s n o t c o nt ai n c on d i t i o n al ou t p u t b oxe s n o r s t a te b ox e s ( d ) a n A S M ch ar t o f t h e m e al y m o d e l c o nt a i n s c on d i t i on a l o u t p u t b oxe s

1 8. I n ge n e ra l M e r ge r t a b l e i s p r e f e r r e d ove r m e r ge r gr a p h w h e n t h e nu mb e r o f s ta t e s ar e P S N S O /P I 1 I 2 A E , 0 B , 0 B , 0 B F , 0 A , 0 C E , - C , 0 D F , 1 D , 0 E C , 1 C , 0 f D , - B , 0 E F B C AC , E F X X E F X X C u r r e c t C D , E F D E X B C , DE X B C , C D ( a) 5 ( b ) 1 0 ( c ) Fe w ( d ) L ar g e

1 9. T h e p r og ra m t a b l e o f P L A i n t h e mu l t i p l i e r i s o b t ai n e d f r om ( a) s t a te t ab l e ( b ) M e r g e r ch a r t ( c ) t r an s i t i o n t ab l e ( d ) A S M ch ar t

2 0. i n a b i n a r y mu l ti p l i e r t h e p a rt i a l p r o d u c t i s s h i f t e d ( a) r i ght & l e f t ( b ) l e f t & ri g ht ( c ) r i ght ( d ) l e f t

DCBAA BAADA DDADB DDDAD

No comments:

About Me