Thursday, April 17, 2008

STLD ONLINE 2

1 . T h e D e c o d e r h a s ( a) P r o gr a mm a b l e OR , fi x e d A N D ga t e s ( b ) P r o gr a mm a b l e OR a n d A N D g a te s ( c ) P r o gr a mm a b l e A N D , fi x e d O R ga t e s ( d ) fi x e d O R an d A N D g at e s

2 . A P RO M ( a) C a n b e p r og r am m e d on l y o n c e ( b ) E r a s ab l e by u t rav i ol e t ra d i at i o n ( c ) i s m as k p ro g ra m m e d ( d ) p r og r am m e d by u s e r

3 . Fo r PA L d e s i g n o f a lo g i c c i r c u i t a s i n gl e l i t e r al te rm ( a) r e q u i r e s a n A N D ga te a n d o n e i n p u t f o r O R ga t e ( b ) d o e s n ot r e q u i r e a n A N D ga t e ( c ) r e q u i r e s a n i nve r te r ( d ) r e q u i r e s a n A N D ga te

4 . T h e p r op e r t i e s of T h r e s h o l d f un c ti o n s ar e ( a) n e i t h e r U n a t e n o n L i n e a r i l y s e p e r a b l e ( b ) o n l y l i n e ar l y s e p e r a b l e ( c ) U n a te a n d L i n e ar l y s e p e r a b l e ( d ) o n l y U n at e

5 . I f w 1 = - 1 , w 2 = - 1 & T = - 1. 5 w i t h b i n a r y i n p u t s x 1 & x 2. T h e o u t p u t Y r e p r e s e nt s ( a) N O R ga t e ( b ) O R ga t e ( c ) E X - OR g at e ( d ) A N D g at e

6 . T h e n e x t s t at e i n a s e qu e nt i a l c i r c u i t i s a f u n c t i o n o f ( a) P r e s e nt I n p u t s ( b ) p r e s e nt s ta t e ( c ) f u t u r e s ta t e ( d ) p r e s e nt S t a te & p r e s e nt i n p u t

7 . T h e m e m or y e l e m e nt o f a s e q u e nt i a l c i r c u i t c o n s i s t s of — — — — — –. ( a) O n l y ga t e s ( b ) G a t e s , fl i p fl o p s , RA M ( c ) O n l y fl i p fl op s ( d ) F l i p F l o p s a n d g at e s

8 . A b i n a r y nu mb e r c a n b e mu l ti p l i e d by 2 o r d i vi d e d by 2 w i t h h e l p of ( a) s h i f t re gi s t e r ( b ) a ny c omb i n a to r i al c i r c u i t ( c ) s e q u e nt i a l c i r c u i t ( d ) A N D g at e

9 . T h e nu mb e r of fl i p fl o p s i n a m o d - N c o u nte r ar e — — — — — – . ( a) l o g 2 ( N ) ( b ) l o g 2 ( N ) - 1 ( c ) l o g 2 ( N - 1 ) ( d ) l o g 2 ( N +1 )

1 0. A c ou nt e r t h at d o e s n o t u s e any a d d i t i on a l l o gi c g at e i s — — — — — . ( a) R i n g c ou nt e r ( b ) J o h n s on c o u nt e r ( c ) P r e s e tt a b l e c ou nt e r ( d ) U p c ou nt e r

1 1. A s e q u e nti a l c i rc ui t w i t h 1 0 s t at e s w i l l h ave ( a) 5 F l i p - F l o p s ( b ) 1 0 F l i p - F l o p s ( c ) 4 F l i p - F l o p s ( d ) 0 F l i p - F l o p s

1 2. T h e ou t p u t o f a c l o cke d s e q u e nti a l c i rc u i t i s i n d e p e n d e nt o f t h e i n p u t . T h i s c i r c u i t c an b e r e p r e s e nt e d by ( a) M e a l y M o d e l ( b ) E i t h e r M e al y or M o o r e m o d e l ( c ) M o o re M o d e l ( d ) N e i t h e r M e al y n or M o o r e m o d e l

1 3. Fo r a 8 s t a t e m a ch i n e i f P 4 = ( A B ) ( C D ) ( E F H ) (G ) t h e n i t s P3 p a rt i t i o n m ay b e ( a) ( A ) ( B ) ( C D ) ( E FG H ) ( b ) ( A B G ) ( C D) (E F H ) ( c ) ( A ) ( B ) ( C ) (E FG H ) ( d ) ( A B C D ) ( E F ) G H )

1 4. T h e d e s i g n o f a c l o cke d s e q u e nti a l c i r c u i t re qu i r e s ( a) T h e A s s i g n m e nt & R e d u c t i on of s t at e s a n d n e x t d e c o d e r s d e s i g n ( b ) T h e s t at e as s i gn m e nt ( c ) t h e d e s i gn of n e x t d e c o d e r ( d ) T h e s t at e r e d u c t i on

1 5. T h e n o n U n i q u e n e s s of i n c om p l e t e l y s p e c i fi e d m a ch i n e s i s t h a t t h e e qu i val e n c e p a rt i t i on c on s i s ts of d is j o int b l o ck , w h i l e t h e s u b s e t s o f C o m p a ti b l e s m ay b e P S N S , O u tp u t X = 0 X = 1 A C , 1 E , 1 B C , - E , 1 C B , 0 A , 1 D D , 0 E , 1 E D , 1 A , 0 ( a) O ve r l a p p i n g ( b ) N o t r e l at e d ( c ) N o t r e l e va nt ( d ) N o n O ve r l a p p e d

1 6. A n A S M ch a rt c an b e ( a) c o nve r t e d i nt o a s t a te t ab l e ( b ) c o nve r t e d t o a s t a t e d i a gr a m & t ab l e a n d i m p l e m e nt e d a s a F li p - F l op ( c ) i m p l e m e nt e d u s i n g ga t e s & fl i p - fl op s ( d ) c o nve r t e d i nt o a s t a te d i a gr am

1 7. W h i ch o f th e t h e s e i s t r u e ( a) a n A S M ch ar t o f t h e m e al y m o d e l d o e s n o t c o nt ai n c on d i t i o n al ou t p u t b oxe s n o r s t a te b ox e s ( b ) a n A S M ch ar t o f t h e m e al y m o d e l c o nt a i n s c on d i t i on a l o u t p u t b oxe s ( c ) a n A S M ch ar t o f t h e m e al y m o d e l d o e s n o t c o nt ai n c on d i t i o n al ou t p u t b oxe s ( d ) a n A S M ch ar t o f t h e m e al y m o d e l c o nt a i n s o n l y s t a t e b oxe s

1 8. T h e c o m pl e te c l a s s e s i n c ol u m n E a re P S N S O /P I 1 I 2 A E , 0 B , 0 B , 0 B F , 0 A , 0 C E , - C , 0 D F , 1 D , 0 E C , 1 C , 0 f D , - B , 0 E F B C AC , E F X X E F X X C u r r e c t C D , E F D E X B C , DE X B C , C D ( a) D E ( b ) A B C ( c ) C D E ( d ) E F

1 9. A p r o gr a m t a bl e i s u s e d f or ( a) Pa rt i t i o n t ab l e s ( b ) A S M ( c ) P L A ’ s ( d ) M e r g e r t a b l e

2 0. I n a on e fl i p - fl o p p e r s t at e m e t h o d th e B o o l e a n f u n c t i o n f o r s e t t i n g t h e fl i p - fl op i s d e t e r m i n e d by ( a) r e s e t i n p u t ( b ) i n p u t c o n d i t i on ( c ) o u tp u t c on d i t i o n ( d ) p r e s e nt s ta t e , i n p u t c o n d i t i on on d i r e c te d l i n e

DAACAD CAACCC BCABB DCD

No comments:

About Me