1 . T h e D e c o d e r h a s ( a) fi x e d O R an d A N D g at e s ( b ) P r o gr a mm a b l e OR , fi x e d A N D ga t e s ( c ) P r o gr a mm a b l e OR a n d A N D g a te s ( d ) P r o gr a mm a b l e A N D , fi x e d O R ga t e s
2 . A P LA i s a ( a) F i e l d p ro gr a m m ab l e ( b ) C a n b e p r og r am m e d by u s e r ( c ) C a n b e e r as e d a n d p r o gr am m e d ( d ) M a s k p r o gr a mm a b l e
3 . Fo u r R A M ch i p s o f 1 6 ×4 s i z e h ave th e i r b u s s e s c o n n e c t e d t o ge t h e r . T h i s s y s t e m w i l l b e o f s i z e ( a) 2 56 ×1 ( b ) 1 6 ×4 ( c ) 1 6 ×1 6 ( d ) 3 2 ×8
4 . T h e p ar a m e t e r s o f a t h r e s h o l d e l e m e nt ar e ( a) o u tp u t var i a b l e s ( b ) va l u e of T ( c ) we i g hts a s s i g n e d t o i n p u t va r i ab l e s ( d ) we i g hts a s s i g n e d t o i n p u t va r i ab l e s a n d T
5 . A t h r e s h o l d f u n c ti o n ( a) i s n ot a u n i t e f u n c t i on ( b ) i s al ways a u n i t e f u n c ti o n ( c ) m ay b e a u n i t e f u n c t i on ( d ) m ay or m ay n ot b e a u n i t e f u n c t i on
6 . R ac e a ro u n d c o n d i t i on o c c u r s i n J K F l i p - F l op s w h e n ( a) O n e o f t h e i n p u t c o mb i n a t i on s ( 0 , 1) i s p r e s e nt ( b ) t h e i n p u t s ar e c om p l e m e nta r y ( c ) b o t h t h e i n p u t s ar e 0 ( d ) b o t h t h e i n p u t s ar e 1
7 . I f t s e t u p = s e t u p t i m e , t p d = p r op a ga t i on d e l ay t i m e , t n s = n e x t s t at e d e c o d e r d e l ay, t h e n m a x i mu m f r e q u e n c y o f e d g e t r i g ge r e d fl i p fl o p i s ( a) 1 /( t s e t u p + t n s ) ( b ) 1 /( t s e t u p + t n s + t p d ) ( c ) 1 /( t p d + t n s ) ( d ) 1 /( t s e t u p + t p d )
8 . T h e fl i p fl op s u s e d i n s h i f t re gi s t e r s ar e — — — — — — - . ( a) R S ( b ) T ( c ) D ( d ) J K
9 . A s e q u e nti a l c i rc u i t w i t h m fl i p fl o p s a n d n i n p u t s n e e ds — — — - r ow s i n t he s t a te t ab l e . ( a) 2 m -n -1 ( b ) 2 m + n ( c ) 2 n ( d ) 2 m
1 0. A c ou nt e r t h at d o e s n o t u s e any a d d i t i on a l l o gi c g at e i s — — — — — . ( a) P r e s e tt a b l e c ou nt e r ( b ) J o h n s on c o u nt e r ( c ) R i n g c ou nt e r ( d ) U p c ou nt e r
1 1. T h e nu mb e r of d i r e c t e d ar c s te rm i n a t i n g on any s t a t e i n a s t at e di a g ra m i s ( a) d e p e n d e nt on th e nu mb e r o f o u t p u ts ( b ) i n d e p e n de nt of t h e nu mb e r o f i n p u t s ( c ) 2 n , w h e r e n i s t h e nu mb e r of i n p u ts ( d ) 2 n w h e r e n i s th e nu mb e r o f F l i p - F l op s
1 2. Fo r d e s i gn i n g a F S M , K - m a p s c an b e u s e d f o r m i n i m i z i n g t h e ( a) e x c i t a ti o n e x p r e s s i on of F l i p F l op s ( b ) nu mb e r o f F l i p F l o p s ( c ) o u tp u t l og i c e x p r e s s i on ( d ) e x c i t a ti o n a n d o u t p u t l og i c
1 3. Fo r a 8 s t a t e m a ch i n e i f P 4 = ( A ) ( B ) ( C D ) ( E FG ) (H ) th e n i t s P3 p a rt i t i on m ay b e ( a) ( A B ) ( C D ) ( E H ) (FG ) ( b ) ( A B ) ( C D ) ( E F ) (G H ) ( c ) ( C D ) ( A ) ( B ) ( E FG ) (H ) ( d ) ( A B C ) (D E F ) (G H )
1 4. T h e e x am p l e of a M e a l y m a ch i n e i s ( a) H a l f a d d e r ( b ) S e r i a l A d d e r ( c ) B i n a r y C o u nt e r ( d ) S e q u e n c e d e t e c t o r
1 5. D i s t i n gu i s h i n g s e q u e n c e f or s t at e s A a n d F P r e s e nt S ta t e N e x t S t a te X = 0 O u tp u t X = 1 A E , 0 C , 0 B C , 0 A , 0 C B , 0 B , 0 D G , 0 A , 0 E F , 1 B , 0 F E , 0 D , 0 G D , 0 G , 0 ( a) 1 01 1 ( b ) 0 00 ( c ) 0 11 10 ( d ) 0 10 0
1 6. I n A S M ch a r t M e a l y ty p e o f o u t p u ts ( a) c a n b e r e p r e s e nt e d by w ri t i n g o u tp u t s t at e va ri a b l e s i n s i d e s ta t e b ox ( b ) c a n b e r e p r e s e nt e d i n s i d e d e c i s i on b ox e s ( c ) c a n b e r e p r e s e nt e d by c on d i t i on a l o u t p u t b ox e s ( d ) c a n n ot b e r e p r e s e nt e d
1 7. A n a s m ch ar t o f t h e m e al y m o d e l ( a) d o e s n ot c ont ai n c on d i t i o n al ou t p u t b ox ( b ) c o nta i n s on l y s ta t e a n d d e c i s i on b ox e s ( c ) o u tp u t s ar e re p re s e nt e d by w r i t i n g ou t p u t s ta t e var i a b l e i n s i d e s t a te b ox ( d ) c o nta i n s c on d i t i o n al ou t p u t b ox
1 8. W h i ch o f t h e f o l l ow i n g i s t ru e ( a) A p a r t i ti o n P i s s ai d t o b e a r e fi n e m e nt o f p ar t i t i on Q i f P i s g r e at e r th a n Q ( b ) A p a r t i ti o n P i s s ai d to b e a r e fi n e m e nt o f p ar t i t i on Q i f P i s 1 90 ( c ) A p a r t i ti o n P i s s ai d to b e a r e fi n e m e nt o f p ar t i t i on Q i f P i s s m a l l e r t h a n Q ( d ) A p a r t i ti o n P i s s ai d to b e a r e fi n e m e nt o f p ar t i t i on Q i f P i s 5
1 9. I n a c ont r ol u n i t t h e n e x t s t a t e i s d e t e r m i n e d by ( a) mu l t i p l e x or s ( b ) g at e s ( c ) d e c o d e r s ( d ) fl i p fl o p s
2 0. A c ont r ol s u b s y s t e m c o n s i s t s of ( a) o n l y s h i f t r e g i s t e r s ( b ) e s s e nti a l l y s e qu e nt i a l c i r c u i t s ( c ) c o mb i n at i on a l c i rc u i ts ( d ) g at e s
BAAAB BADDA CCADD BABDC
No comments:
Post a Comment