Thursday, April 17, 2008

STLD ONLINE 6

1 . 1 6 i n p u ts , 40 A N D ga t e s , 1 00 O R ga t e s ar e i n a P L A . T h e nu mb e r o f f u s e s t o b e p r o gr a m m e d i s ( a) 6 40 00 ( b ) 5 60 0 ( c ) 4 01 6 ( d ) 5 38 0

2 . Fu s i b l e l i n k i s a s s o c i a te d w i t h ( a) E P R O M ( b ) R O M ( c ) P R O M ( d ) E A R O M

3 . A ROM h a s 3 2K × 8 o rg an i s at i o n . I t s c ap a c i ty i n b i t s i s ( a) 1 28 K b i t s ( b ) 5 12 K b i t s ( c ) 6 4 K b i t s ( d ) 2 56 K b i t s

4 . T h e p ar a m e t e r s o f a t h r e s h o l d e l e m e nt ar e ( a) va l u e of T ( b ) o u tp u t var i a b l e s ( c ) we i g hts a s s i g n e d t o i n p u t va r i ab l e s ( d ) we i g hts a s s i g n e d t o i n p u t va r i ab l e s a n d T

5 . A s w i t ch i n g f u n c t i o n Y vc an b e d e c om p o s e d i nt o two t h re s h ol d f u n c t i o n s f 1 a n d f 2 . T h e f u n c ti o n Y c a n b e i m p l e m e nt e d u s i n g ( a) 2 t h r e s h o l d e l e m e nt s i nt e r c o n n e c t e d to p e r f or m O R o p e r at i o n ( b ) 1 t h r e s h o l d e l e m e nt s ( c ) 2 t h r e s h o l d e l e m e nt s i nt e r c o n n e c t e d to p e r f or m O R o p e r at i o n ( d ) 2 t h r e s h o l d e l e m e nt s i nt e r c o n n e c t e d to p e r f or m N A N D op e ra t i on

6 . W h i ch o f th e f o l l ow i n g i s a s e q u e nt i al c i r c u i t ( a) B C D A d d e r ( b ) Pa ra l l e l A d d e r ( c ) S e r i a l A d d e r ( d ) L o ok A h e ad A d d e r

7 . T h e c l o cke d s e q u e nt i al c i r c u i t c o m p ar e d w i t h a s y n ch ro n o u s s e qu e nt i a l c i r c u i t h a s ( a) F l i p F l o p s ra t h e r t h an L at ch e s ( b ) F l i p F l o p s & C l o ck ( c ) C o m p u l s o ry C l o ck ( d ) n e i t h e r F l i p F l op s n or C l o ck

8 . I n a fl i p fl op , th e p r e s e t a n d c l e ar i n p u t s ar e u s e d f or ma k i n g t h e o u t pu t ( q ) — — — — — . ( a) q = 1 a n d 0 r e s p e c t i ve l y ( b ) q = 0 a n d 0 r e s p e c t i ve l y ( c ) q = 1 a n d 1 r e s p e c t i ve l y ( d ) q = 0 a n d 1 r e s p e c t i ve l y

9 . T h e nu mb e r of fl i p fl o p s i n a d e c ad e c o u nte r ar e — — — — — . ( a) 5 ( b ) 3 ( c ) 1 0 ( d ) 4

1 0. I n a 4 b i t s h i f t r i g ht ri n g c ou nt e r i f th e p r e s e nt s ta t e i s 1 00 0, th e n t h e n e x t s ta t e i s — — – . ( a) 0 01 0 ( b ) 0 10 0 ( c ) 0 00 1 ( d ) 1 00 0

1 1. I n s e r i al ad d e rs t h e c a r r y ou t of t h e Fu l l A d d e r i s gi ve n to ( a) N A N D g at e ( b ) M u l t i p l e x e r ( c ) N O R ga t e ( d ) D F l i p F l op

1 2. A s e q u e nti a l c i rc ui t w i t h a 4 nu mb e r s o f o u t p u t s p r o d u c e s an ou t p u t s e t c ont a i n i n g ( a) 1 6 s e t s ( b ) 4 s e t s ( c ) 8 s e t s ( d ) 1 5 s e t s

1 3. W i t h i n i t i a l s t a te A , th e i n p u t s e qu e n c e 1 10 t r a n s f o rm s t o ( s h ow n i n fi g u re 1 3) F i g u re 13 ( a) 0 00 ( b ) 1 10 ( c ) 1 01 ( d ) 1 11

1 4. A s e q u e nti a l m a ch i n e i s ( a) q u i ntu p l e ( b ) Q u ad tu p l e ( c ) o n e t u p l e ( d ) T wo t u p l e

1 5. T h e f o l l ow i n g s t a te s a r e c o m p a ti b l e w i t h ‘ A ’ i f d a s h i s ‘ 0 ’ P S N S , O u tp u t X = 0 X = 1 A C , 1 E , 1 B C , - E , 1 C B , 0 A , 1 D D , 0 E , 1 E D , 1 A , 0 ( a) C ( b ) B ( c ) E ( d ) D

1 6. I n an A S M C h a r t , M o o r e ty p e o f Ou t p u t s a r e r e p r e s e nt e d by ( a) r e a d i n g th e s e o u t p u ts i n s i d e s t at e b ox ( b ) u n c o n d i ti o n a l o u tp u t b ox ( c ) c o n d i t i on a l o u tp u t b ox ( d ) w r i t i n g th e s e o u t p u t s i n s i d e s t a te b ox

1 7. W h i ch o f th e t h e s e i s t r u e ( a) M e a l y Ty p e of ou t p u t s ar e i n d e p e n d e nt o f t h e p re s e nt s t a te a n d i n p u t s ( b ) M e a l y Ty p e of ou t p u t s ar e d e p e n d e nt o n t h e pr e s e nt s t at e an d i n p u ts ( c ) M e a l y Ty p e of ou t p u t s ar e i n d e p e n d e nt o f t h e p re s e nt s t a te ( d ) M e a l y Ty p e of ou t p u t s ar e i n d e p e n d e nt o f t h e i n p u ts

1 8. T h e c o m pl e te c l a s s e s i n c ol u m n E a re P S N S O /P I 1 I 2 A E , 0 B , 0 B , 0 B F , 0 A , 0 C E , - C , 0 D F , 1 D , 0 E C , 1 C , 0 f D , - B , 0 E F B C AC , E F X X E F X X C u r r e c t C D , E F D E X B C , DE X B C , C D ( a) D E ( b ) C D E ( c ) E F ( d ) A B C

1 9. i n a b i n a r y mu l ti p l i e r ( a) T h e p ar t i al p r o d u c t i n A & mu l t i p l i e r i n Q ar e b ot h s h i f t e d t o t h e r i g ht & l e f t r e s p e c t i ve l y ( b ) T h e p ar t i al p r o d u c t i n A & mu l t i p l i e r i n Q ar e b ot h s h i f t e d t o t h e r i g ht ( c ) T h e p ar t i al p r o d u c t i n A & mu l t i p l i e r i n Q ar e b ot h s h i f t e d t o t h e l e f t & r i ght r e s p e c t i ve l y ( d ) T h e p ar t i al p r o d u c t i n A & mu l t i p l i e r i n Q ar e b ot h s h i f t e d t o t h e l e f t

2 0. w h i ch of t he s e i s t r u e ( a) A s e qu e nt i a l c i r c u i t w i t h 3 nu mb e r s o f o u t p u ts p r o d uc e s a n o u t pu t al p h a b e t c o nta i n i n g 32 nu mb e r o f o u tp u t s e t s ( b ) A s e qu e nt i a l c i r c u i t w i t h 3 nu mb e r s o f o u t p u ts p r o d uc e s a n o u t pu t al p h a b e t c o nta i n i n g 16 nu mb e r o f o u tp u t s e t s ( c ) A s e q u e nt i al c i r c u i t w i t h 3 nu mb e r s o f ou t p u t s p r o d u c e s an o u tp u t a l p h ab e t c o nt ai n i n g 8 nu mb e r of o u t pu t s e t s ( d ) A s e q u e nt i al c i r c u i t w i t h 3 nu mb e r s o f ou t p u t s p r o d u c e s an o u tp u t a l p h ab e t c o nt ai n i n g 4 nu mb e r of o u t pu t s e t s

DCDDC CBADB DADAC DBCDC

No comments:

About Me