Thursday, April 17, 2008

STLD ONLINE 17

1 . RO M ava i l ab l e a t h an d ar e 16 × 4 i n s i z e . I t i s d e s i re d t o h ave 6 4 × 8 RO M . T h e nu mb e r o f 16 × 4 r om s t o ach i e ve t h i s a r e ( a) 8 ( b ) 1 6 ( c ) 3 2 ( d ) 6 4

2 . A P LA c o n s i s t s o f ( a) O R m at r i x ( b ) I nve r t/ n o n i nve r t m at r i x ( c ) A N D , O R an d i nve r t / n on i nve r t m a t ri x ( d ) A N D m a t ri x

3 . 8 R A M ch i p s of 1 6 × 4 s i z e h ave t h e i r b u s s e s s u ch t h a t t h e d a t a b u s i s 16 b i t s w i d e . T h i s s y s t e m m e m or y s i z e i s ( a) 1 6K × 4 ( b ) 3 2K × 8 ( c ) 2 56 K × 1 ( d ) 6 4K × 8

4 . A t h r e s h o l d f u n c t i o n h as a 3 m i n i m a l t r u e ve rt i c e s a n d 3 m ax i m al f al s e ve r ti c e s . T h e nu mb e r of i n e q u al i t i e s to b e s a t i s fi e d a r e ( a) 2 7 ( b ) 9 ( c ) 3 ( d ) 6

5 . T h e p ar a m e t e r s o f a t h r e s h o l d e l e m e nt ar e ( a) n e i t h e r i n p u t , n o r o u t p ut va ri a b l e s n or T va l u e s ( b ) va l u e of T ( c ) we i g hts a s s i g n e d t o i n p u t va r i ab l e s ( d ) we i g hts a s s i g n e d t o i n p u t va r i ab l e s a n d T

6 . A tw i s t e d r i n g c ou nt e r c o n s i s t i n g o f s i x F l i p F l o p s w i l l h ave ( a) 6 s t a te s ( b ) 1 28 s t a t e s ( c ) 1 2 s t at e s ( d ) 6 4 s t at e s

7 . I f t s e t u p = s e t u p t i m e , t p d = p r op a ga t i on d e l ay t i m e , t n s = n e x t s t at e d e c o d e r d e l ay, t h e n m a x i mu m f r e q u e n c y o f e d g e t r i g ge r e d fl i p fl o p i s ( a) 1 /( t s e t u p + t n s ) ( b ) 1 /( t p d + t n s ) ( c ) 1 /( t s e t u p + t n s + t p d ) ( d ) 1 /( t s e t u p + t p d )

8 . W h e n t h e p r e s e nt va l u e of t h e ou t p u t y( t ) a n d th e T va l u e ar e k n ow n i n a T fl i p fl o p , t h e n e x t s t a te y ( t +1 ) i s — — — — — — — — — - . ( a) T XO R y ( t) ( b ) T A N D y (t ) ( c ) T X N OR y ( t ) ( d ) T OR y ( t )

9 . A s e q u e nti a l c i rc u i t w i t h m fl i p fl o p s a n d n i n p u t s n e e ds — — — - r ow s i n t he s t a te t ab l e . ( a) 2 m -n -1 ( b ) 2 m ( c ) 2 n ( d ) 2 m + n

1 0. A tw i s t e d r i n g c ou nt e r h avi n g f ou r fl i p fl op s h as ( a) 3 2 s t at e s ( b ) 1 2 s t at e s ( c ) 4 s t a te s ( d ) 6 4 s t at e s

1 1. S e r i a l a d d e rs a re u s e d b e c a u s e ( a) T h e y ar e s l ow ( b ) n e e d m or e w i r e s ( c ) n e e d l e s s nu mb e r of d e v i c e s ( d ) T h e y ar e Fas t

1 2. I n a s e q u e nt i al c i rc u i t d e s i g n s t a t e r e d u c t i o n i s d on e f o r d e s i g n i n g th e c i r c u i t w i t h ( a) m i n i mu m nu mb e r o f g a te s ( b ) O n e g at e on l y ( c ) m i n i mu m nu mb e r o f g a te s a n d m e m o r y l o c at i o n s ( d ) m i n i mu m nu mb e r o f F l i p F l o p s

1 3. W i t h I n i t i a l s t a t e C , t h e i n p u t s e q u e n c e 01 11 w i l l t r an s f or m t o o u tp u t s e q u e n c e (s h ow n i n fi g ur e 13 ) F i g u re 13 ( a) 1 01 0 ( b ) 0 11 1 ( c ) 1 11 0 ( d ) 1 11 1

1 4. T h e ou t p u t o f a c l o cke d s e q u e nti a l c i rc u i t i s i n d e p e n d e nt o f t h e i n p u t . T h i s c i r c u i t c an b e r e p r e s e nt e d by t h e ( a) n e i t h e r M e al y n o r M o o r e m o d e l s ( b ) e i t h e r M e al y o r M o o r e m o d e l ( c ) M o o re m o d e l ( d ) M e a l y M o d e l

1 5. D i s t i n gu i s h i n g s e q u e n c e f or s t at e s G a n d F P r e s e nt S ta t e N e x t S t a te X = 0 O u tp u t X = 1 A E , 0 C , 0 B C , 0 A , 0 C B , 0 B , 0 D G , 0 A , 0 E F , 1 B , 0 F E , 0 D , 0 G D , 0 G , 0 ( a) 2 ( b ) 4 ( c ) 3 ( d ) 1

1 6. M o o re Ty p e o f Ou t p u t s a r e ( a) d e p e n d e nt on l y o n t h e i n p u ts ( b ) d e p e n d s o n t h e ty p e of h ar d wa re u s e d f o r i m p l e m e nt at i o n ( c ) D e p e n d e nt on p r e s e nt s t at e an d i n p u t ( d ) i n d e p e n d e nt of t h e i n p u t s

1 7. A s ta t e b ox i n a n a s m ch ar t ( a) m ay b e i n c l u d e d i n a ny nu mb e r o f a s m b l o ck s ( b ) i s n ot i n c l u d e d o n l y i n o n e a s m b l o ck ( c ) i s i n c l u d e d o n l y i n o n e as m b l o ck ( d ) m ay b e s h ar e d by two a s m b l o ck s

1 8. W h i ch o f t h e f o l l ow i n g i s t ru e ( a) A p a r t i ti o n P i s s ai d t o b e a r e fi n e m e nt o f p ar t i t i on Q i f P i s 1 90 ( b ) A p a r t i ti o n P i s s ai d to b e a r e fi n e m e nt o f p ar t i t i on Q i f P i s s m a l l e r t h a n Q ( c ) A p a r t i ti o n P i s s ai d to b e a r e fi n e m e nt o f p ar t i t i on Q i f P i s 5 ( d ) A p a r t i ti o n P i s s ai d to b e a r e fi n e m e nt o f p ar t i t i on Q i f P i s g r e at e r th a n Q

1 9. I n a c ont r ol s y s t e m t h e nu mb e r of fl i p fl o p s u s e d p e r s t at e i s ( a) 3 ( b ) 6 ( c ) 8 ( d ) 1

2 0. A m a ch i n e p os s e s s i n g t h e p ro p e r t i e s t ha t s ( t + 1 ) = δ ( s ( t ) , x ( t) ) a nd Z ( t) = λ { s ( t ) } i s a ( a) m o or e m ach i n e ( b ) m e a l y m a ch i n e ( c ) n e i t h e r m o o re n o r m e a l y m ach i n e ( d ) b o t h m o or e & m e al y m ach i n e s

ACDBD CCADA CDCCD DCDDA

No comments:

About Me