Monday, April 14, 2008

EMWT ONLINE 12

1 . At t h e d i e l e c t ri c c on d u c t o r i nte rf ac e t h e wave
( a) C o m p l e t e r e fl e c ti o n t a ke s p l a c e ( b ) N o t r an s m i s s i on an d n o re fl e c t i on ta ke p l a c e . ( c ) C o m p l e t e t r an s m i s s i o n t ake s p l ac e ( d ) B o t h r e fl e c t i o n a n d t r an s mi s s i o n t ake s p l ac e

2 . Fo r n o r m al i n c i d e n c e , th e an g l e of i n c i d e n c e i s
( a) 0 0 ( b ) 1 80 0 ( c ) 4 5 0 ( d ) 9 0 0

3 . T h e an o t h e r n a m e o f B r e w s t e r a n gl e i s
( a) A n g l e o f r e fl e c ti o n ( b ) N o n p o l ar i z i n g a n gl e ( c ) A n g l e o f t r an s m i s s i o n ( d ) Po l ar i z i n g a n gl e

4 . T h e s u r f a c e r e s i s t an c e ( a) I n c r e a s e s w i t h c on d u c t i v i ty ( b ) D e c r e a s e s w i t h f r e q u e n c y ( c ) D e c r e a s e s w i t h f r e q u e n c y an d I n c r e as e s w i th c o n d u c t i vi ty ( d ) I n c r e a s e s w i t h f re q u e n c y

5 . A u n i f o r m p l an e wave tr ave l i n g i n a d i e l e c t r i c of re f r ac t i ve i n d e x 2 i s i n c i d e nt at t h e d i e l e c tr i c a i r s u r f a c e . T h e n th e c r i t i c a l a ng l e at t h e i nte rf a c e i s ( a) S i n - 1 ( 1 √ 2 ) ( b ) S i n - 1 ( √2 ) ( c ) Tan - 1 ( 1 √ 2 ) ( d ) S i n - 1 ( 1 2 )

6 . I f t h e d i s t a n c e b e twe e n t h e p l an e s i s in fi n i t e t h e n t h e wave i n t h a t d i r e c t i on i s
( a) I n c r e a s e s l i n e a r l y ( b ) N o n u n i f o r m ( c ) I n c r e a s e s e x p o n e nti a l l y ( d ) U n i f o r m

7 . Fo r a z d i r e c t e d T E wave
( a) H z = E z = 0 ( b ) E z = 0 ( c ) E = 0 ( d ) H z = 0

8 . O th e r n am e of T M wave i s
( a) E wave ( b ) H wave ( c ) U n i f o r m p l a ne wave ( d ) E & H wave

9 . Fo r a T E M wave
( a) H z = E z = 0 ( b ) E z = 0 ( c ) E z = 0 , H z = 0 ( d ) H z = 0

1 0. C o n s i d e r a wave of 3 G H z p r o p ag at i n g i n p a r al l e l c o n d u c t i n g p l at e s s e p a r at e d by 3 c m . T h e n t h e λ c i s
( a) 1 . 5 c m ( b ) 3 c m ( c ) 1 /3 c m ( d ) 6 c m

1 1. I n s ol v i n g t r an s m i s s i o n l i n e p r o b l e m s we u s e t h e f o l l ow i n g c i r c u i t q u ant i t i e s
( a) V a n d I ( b ) E an d H ( c ) D a n d B ( d ) J a n d E

1 2. I n a t r a n s m i s s i o n l i n e w h e n t e r m i n at i o n i m p e d a n c e i s e q u a l t o ch ar a c t e ri s ti c i m p e d a n c e of th a t l i n e t h e n th e r e fl e c t i o n c o e ffi c i e nt i s
( a) Z e ro ( b ) U n i ty ( c ) E q u a l t o t ra n s m i s s i on c o e ffi c i e nt ( d ) I n fi n i ty

1 3. Fo r a l o s s l e s s l i n e t h e l i n e ch ar a c t e r i s t i c s r e p e at f or e ve r y ( a) 3 λ / 4 ( b ) λ / 2 ( c ) λ ( d ) λ / 4

1 4. H y s t e r e s i s an d e d d y c u r r e nt l o s s e s i n l o ad i n g c oi l s l e ad s t o ( a) I n c r e a s e i n R ( b ) D e c r e a s e i n L ( c ) D e c r e a s e i n R ( d ) I n c r e a s e i n L

1 5. h i g h f r e q u e n c y l i n e h a s L = 0. 1 m H / K m , C = 0 . 1 m i c ro f a r ad s /K m . I f R & G ar e n e gl i g i b l e , t h e n ch a r ac te ri s ti c i m p e d a n c e i s
( a) 1 00 O h m s ( b ) 4 00 O h m s ( c ) 2 00 O h m s ( d ) 5 0 Oh m s

1 6. I f β l < π / 2 , t h e i n p u t i m p e d an c e o f a o p e n c i r c u i te d l i n e w i l l b e
( a) C a p ac i ti ve ( b ) C o m p l e x q u ant i ty ( c ) R e s i s t i ve ( d ) I n d u c t i ve

1 7. A λ / 8 l i n e m ay b e u s e d to t r a n s f o rm any r e s i s ta n c e t o an i m p e d an c e w i t h a m a g n i tu d e e q u al t o ( a) 1 / R 0 o f t h e l i n e
( b ) R 0 o f t h e l i n e ( c ) Z 0 o f t h e li n e ( d ) 1 /Z 0 o f t h e l i n e

1 8. I n a tr a n s m i s s i o n l i n e at a p oi nt o f Z m i n t h e r e i s a ( a) I m a x ( b ) I m i n ( c ) V m i n ( d ) V m a x

1 9. A s tu b w i t h a s h o r t c i r c u i t e d l o ad off e r s ( a) I n d u c t i ve r e a c t an c e ( b ) P u r e re s i s t an c e ( c ) I m p e d an c e ( d ) C a p ac i ti ve r e a c t a n c e

2 0. A c e r ta i n l ow l o s s l i n e h a s Z 0 = 4 00 o h m s . Fo r Z L = 2 00 o h m s , t h e S W R i s ( a) 1 / 2 ( b ) 4 ( c ) 1 /3 ( d ) 2
A A D D D D B D A D A A B A A A B C A D

EMWT ONLINE 11

1 . . T h e m ag n i t u d e o f th e E a t t h e d i e l e c t r i c - c o n d u c t o r i nt e r f a c e
( a) T w i c e t o t h at o f th e i n c i d e nt fi e l d ( b ) Z e ro ( c ) I n fi n i ty ( d ) H a l f t o t h at o f th e i n c i d e nt fi e l d

2 . T h e r e f r ac t i ve i n d e x of a d i e l e c t r i c m at e r i al
( a) S q r t( ∈ 0 ∈ r ) ( b ) S q r t( ∈ 0 ) ( c ) S q r t( ∈ r ) ( d ) S q r t( ∈ 0 / ∈ r )

3 . D u r i n g to t al i nt e r n a l r e fl e c t i o n wave u n d e r g o e s
( a) Po l ar i z a t io n ch a n g e ( b ) A p h a s e ch an g e ( c ) N o ch a n ge i n t h e p h a s e ( d ) M a gn i t u d e ch an g e

4 . At ve r y h i gh f r e q u e n c y t h e am o u nt of p owe r p e n e t r at i o n i nt o th e c o n d u c t i n g m e d i u m (
a) L ow ( b ) Ve ry l ow ( c ) H i g h ( d ) Ve ry h i gh

5 . I n a re gi o n E = 1 00 ( j a x + 2 a y - j a z ) e j ω t a n d H = ( - a x + j a y + a z ) e j ω t . T h e n ave r ag e p owe r fl ow d e n s i ty i s
( a) - 1 50 ( a x + a z ) ( b ) 5 0( a x + a z ) ( c ) 1 50 ( a x + a z ) ( d ) - 5 0( a x + a z )

6 . I f t h e p r o p ag at i o n c o n s t ant i s a r e al q u ant i ty th e n t h e wave
( a) I n c r e a s e s l i n e a r l y ( b ) D e c r e a s e s l i n e a rl y
( c ) D e c r e a s e s e x p o ne nt i a l l y ( d ) I n c r e a s e s e x p o n e nti a l l y

7 . T h e p r op a ga t i n g ve l o c i ty o f T E wave s
( a) D e p e n d s o n f r e q u e n c y ( b ) D e p e n d s o n s q u ar e of t h e f re qu e n c y ( c ) I n d e p e n d e nt of f r e q u e n c y ( d ) Va r i e s i nve r s e l y w i th f r e q u e n c y

8 . C u t - o ff f r e qu e n c y i s a f r e q u e n c y b e l ow w h i ch ( a) β = α = 0 ( b ) Z g = 0 ( c ) α = 0 ( d ) β = 0

9 . A m o d e w h i ch d o e s n ot p ro p a ga te i s
( a) E van e s c e nt m o d e ( b ) D om i n a nt m o d e ( c ) T E m o d e ( d ) P r i n c i p a l wave

1 0. W h e n a wave i s tr ave l i n g i n Z d i re c ti o n , t h e n i t s i mp e d an c e i s gi ve n by
( a) - E y / H x ( b ) E x / H y ( c ) - E x / H y ( d ) E y / H x

1 1. T wo w i r e tr a n s m i s s i o n l i n e s c o n s i s t s of a p a i r of p ar a l l e l c on d u c t i n g w i r e s s e p a r at e d by
( a) I n fi n i t e d i s t an c e ( b ) Z e ro d i s ta n c e ( c ) U n i f o r m d i s t a n c e ( d ) N o n u n i f o r m d i s t an c e

1 2. I n a t r a n s m i s s i o n l i n e w h e n t e r m i n at i o n i m p e d a n c e i s e q u a l t o ch ar a c t e ri s ti c i m p e d a n c e of th a t l i n e t h e n th e r e fl e c t i o n c o e ffi c i e nt i s
( a) I n fi n i ty ( b ) Z e ro ( c ) E q u a l t o t ra n s m i s s i on c o e ffi c i e nt ( d ) U n i ty

1 3. Fo r a l o s s l e s s l i n e t h e l i n e ch ar a c t e r i s t i c s r e p e at f or e ve r y
( a) λ / 4 ( b ) λ ( c ) λ / 2 ( d ) 3 λ / 4

1 4. B y i n s e r t i n g i n du c ta n c e i n s e ri e s w i t h t h e l i n e t o i n c r e a s e th e i n d u c t a nc e i s c a l l e d
( a) O p e n c i rc u i t ( b ) U n l o ad i n g ( c ) Fe e d b ack ( d ) L oa d i n g



1 5. h i g h f r e q u e n c y l i n e h a s L = 0. 1 m H / K m , C = 0 . 1 m i c r o f ar ad s /K m . I f R & G ar e n e gl i g i b l e , t h e n ch ar a c te ri s ti c i m p e d a n c e i s
( a) 1 00 O h m s ( b ) 4 00 O h m s ( c ) 5 0 Oh m s ( d ) 2 00 O h m s

1 6. T h e i n c i d e nt p owe r i s f u l l y a bs or b e d by t h e l o ad i f ( a) Z L = Z 0 ( b ) Z L = 0 ( c ) Z L = i n fi n i ty ( d ) Z L  = Z 0


1 7. W h i ch o f t h e f o l l ow i n g i s a on e t o on e t ra n s f o r m e r
( a) λ / 8 l i n e ( b ) λ / 2 l i n e ( c ) λ / 4 l i n e ( d ) λ l i n e

1 8. T h e s m i t h ch a rt c an b e u s e d a s
( a) I m p e d an c e ch ar t a s we l l a s A d m i t t a n c e ch a r t ( b ) I m p e d an c e ch ar t o n l y ( c ) A d m i t t an c e ch ar t o n l y ( d ) N o rm a l i z e d ad m i t t an c e ch a r t on l y

1 9. A s tu b w i t h a s h o r t c i r c u i t e d l o ad off e r s ( a) P u r e re s i s t an c e ( b ) C a p ac i ti ve r e a c t a n c e ( c ) I m p e d an c e ( d ) I n d u c t i ve r e a c t an c e

2 0. C o n s i d e r a 5 m l e n g t h t r an s m i s s i on l i n e i s p r op e rl y te rm i n a t e d w i t h 5 0 o h m s L o ad T h e n t h e i n pu t i m p e d a n c e a t 3 m f r o m s o u rc e e n d i s ( a) 7 5 oh m s ( b ) 2 5 oh m s ( c ) 1 00 o h m s ( d ) 5 0 oh m s

BCBBC CADAB CBCDA ABADD

EMWT ONLINE 10

1+
+ . T h e i d e al c o n d u c t i n g b ou n d a r y i s a n a l og ou s t o ( a) O p e n c i r c u i t on th e t ra n s m i s s i on l i n e ( b ) T h e t ra n s m i s s i on l i n e t e r m i n at e d w i t h i t s ch a r ac te r i s t i c i m p e d a n c e ( c ) T h e t ra n s m i s s i on l i n e t e r m i n at e d w i t h a ny l oa d . ( d ) S h o rt c i rc u i t on t h e t r an s m i s s i on l i n e

2 . I n th e c a s e of p e r p e n d i c u l a r p o l ar i z a t i on ( a) T h e E i s p e r p e n d i c u l ar t o t h e p l a n e of i n c i d e n c e an d p ar a l l e l t o t h e r e fl e c ti n g s u rf ac e ( b ) T h e H i s p e r p e n d i c u l a r t o t h e p l a n e o f i n c i d e n c e an d p ar a l l e l t o t h e r e fl e c ti n g s u r f a c e ( c ) T h e H i s Par a l l e l t o t h e p l a n e of i n c i d e n c e an d p e r p e n d i c u l a r t o t h e r e fl e c ti n g s ur f a c e ( d ) T h e E i s p a ra l l e l t o t h e p l an e of i n c i d e n c e an d p e r p e n d i c ul a r t o t h e r e fl e c ti n g s u rf ac e

3 . T h e ga s l as e r u s e s ( a) Tot a l i nte rn a l r e fl e c t i on c on c e p t ( b ) B r e w s t e r e ff e c t ( c ) B o t h B re w s t e r e ff e c t a n d t ot a l i nt e r n al re fl e c t i on c on c e p t ( d ) C r i t i c a l an g l e c on c e p t

4 . T h e u n i t f o r p o i nt i n g ve c t or i s ( a) Wa t t s /m 2 ( b ) Wa t t s /m 3 ( c ) Wa t t s ( d ) Wa t t s /m

5 . I f r e fl e c t i o n c o e ffi c i e nt = - 1 / 2 t h e n t h e s w r i s ( a) O n e ( b ) 1 /3 ( c ) Z e ro ( d ) 3

6 . Fo r u n a t te nu a t e d wave , t h e wave e q u a ti o n i s ( a)  2 E = ss 2 E ( b )  2 E = 1/ j ss 2 E ( c )  2 E = j ss 2 E ( d )  2 E = - ss 2 E

7 . Fo r a z d i r e c t e d T E wave ( a) E z = 0 ( b ) E = 0 ( c ) H z = E z = 0 ( d ) H z = 0

8 . O th e r n am e of T M wave i s ( a) U n i f o r m p l a ne wave ( b ) H wave ( c ) E wave ( d ) E & H wave

9 . T E M wave e x i s t s i n ( a) A h o l l ow wave g u i d e ( b ) A d i e l e c t r i c fi l l e d wave g u i d e ( c ) A m i c ro s tr i p ( d ) B e twe e n p ar a l l e l p l a t e s

1 0. W h e n a wave i s tr ave l i n g i n Z d i re c ti o n , t h e n i t s i mp e d an c e i s gi ve n by ( a) - E y / H x ( b ) E x / H y ( c ) E y / H x ( d ) - E x / H y

1 1. I n s ol v i n g t r an s m i s s i o n l i n e p r o b l e m s we u s e t h e f o l l ow i n g c i r c u i t q u ant i t i e s ( a) E an d H ( b ) D a n d B ( c ) J a n d E ( d ) V a n d I

1 2. I n a tr a n s m i s s i o n l i n e t h e d i s t a n c e b e twe e n two s u c c e s s i ve m i n i m a i s ( a) λ / 4 ( b ) λ ( c ) λ / 3 ( d ) λ / 2

1 3. A l o s s y tr a n s m i s s i o n l i n e ( a) D i s p e r s i ve ( b ) H ave i n fi n i te l os s ( c ) N o n D i s p e r s i ve ( d ) I t mu s t b e a d i s to r ti o n l e s s l i n e

1 4. I f L T a n d C T a re t h e to t al i n d u c t an c e a n d to t al c a p ac i t a n c e of t h e l i ne i n c l u d i n g th e l o ad i n g c o i l s , t h e n i t s c u t o ff f r e q u e n c y i s g i ve n by ( a) 1 / ( 2 π . s q r t (L T C T ) ) ( b ) 1 / ( π . s q r t (L T C T ) ) ( c ) π . s q r t (L T C T ) ( d ) π / s q r t (L T C T )

1 5. I f 10 0 m e t e r l e n g t h t r an s m i s s i o n l i n e h as α = 0 . 05 N p /m , t h e a t t e nu at i on at th e e n d o f th e l i n e ( a) 5 d B ( b ) 4 3. 4 d B ( c ) 5 0 d B ( d ) 3 4. 3 d B

1 6. I f π / 2 < β l < π , t h e i n p u t i m p e d a n c e o f s h or t c i rc u i te d l i n e w i l l b e ( a) I n d u c t i ve ( b ) C o m p l e x q u ant i ty ( c ) C a p ac i ti ve ( d ) R e s i s t i ve

1 7. A s h or t c i r c u i t e d λ / 4 l i n e c a n b e u s e d as ( a) A c ap a c i t or ( b ) A c on d u c t o r ( c ) A n i n s u l at o r ( d ) A n i n d u c to r

1 8. O n a t ra n s m i s s i on l i n e V m a x a n d V m i n a re s e p a r at e d by th e d i s t a n c e o f ( a) λ ( b ) λ / 8 ( c ) λ / 4 ( d ) λ / 2

1 9. I n th e s i n g l e s tu b m at ch i n g t h e l o c a t i on of t h e s t u b ch a n g e s w i th ( a) S o u rc e i m p e d a n c e ( b ) C h a r ac t e r i s t i c i m p e d a n c e ( c ) Fr e q u e n c y ( d ) L oa d i m p e d an c e

2 0. T wo ve r y l o n g l o s s l e s s c ab l e s of ch a r ac te ri s ti c i mp e d an c e s o f 36 oh m s an d 1 00 oh m s r e s p e c t i ve l y a r e t o b e j oi n e d f o r r e fl e c t i o n l e s s t r an s m i s s i on . T h e Z 0 o f a m a tch i n g t r a n s f o rm e r i s ( a) 6 0 oh m s ( b ) 1 00 o h m s ( c ) 1 /3 6 oh m s ( d ) 3 6 oh m s

DABAD DADDB DDABB CCCCA

EMWT ONLINE 9

1 . At t h e d i e l e c t ri c c o n d u c t or i nt e r f a c e
( a) T h e H i s h al f of t h e i n c i d e nt fi e l d ( b ) T h e E i s d ou b l e o f t h e i n c i d e nt fi e l d ( c ) T h e E i s h al f o f t h e i n c i d e nt fi e l d
( d ) T h e H i s d ou b l e of t h e i n c i d e nt fi e l d

2 . Fo r n o r m al i n c i d e n c e , th e an g l e of i n c i d e n c e i s
( a) 1 80 0 ( b ) 4 5 0 ( c ) 0 0 ( d ) 9 0 0

3 . Fo r t o ta l i nt e r n al r e fl e c t i on t h e fi e l d s i n t h e s e c o n d m e d i u m
( a) I n fi n i t e at t h e i nt e r f a c e ( b ) D o n ot van i s h ( c ) Va n i s h c om p l e t e l y ( d ) N o ch a n ge w i t h a n gl e of i n c i d e n c e

4 . T h e s u r f a c e r e s i s t an c e
( a) I n c r e a s e s w i t h c on d u c t i v i ty ( b ) D e c r e a s e s w i t h f r e q u e n c y ( c ) D e c r e a s e s w i t h f r e q u e n c y an d I n c r e as e s w i th c o n d u c t i vi ty
( d ) I n c r e a s e s w i t h f re q u e n c y

5 . I n a re gi o n E = 1 00 ( j a x + 2 a y - j a z ) e j ω t a n d H = ( - a x + j a y + a z ) e j ω t . T h e n ave r ag e p owe r fl ow d e n s i ty i s
( a) 5 0( a x + a z ) ( b ) 1 50 ( a x + a z ) ( c ) - 5 0( a x + a z ) ( d ) - 1 50 ( a x + a z )

6 . I f t h e p r o p ag at i o n c o n s t ant i s a r e al q u ant i ty th e n t h e wave
( a) I n c r e a s e s e x p o n e nti a l l y ( b ) I n c r e a s e s l i n e a r l y ( c ) D e c r e a s e s e x p o ne nt i a l l y ( d ) D e c r e a s e s l i n e a rl y


7 . T h e l owe s t or d e r m o d e of T E wave s b e twe e n p a ra l l e l c on d u c to r s
( a) T E 0 0 ( b ) T E 1 1 ( c ) T E 1 2 ( d ) T E 1 0

8 . G r o u p ve l o c i ty , p h as e ve l o c i ty an d f r e e s p ac e ve l o c i ty ar e r e l a t e d by
( a) v 2 0 = v g v p ( b ) v 0 = v g / v p ( c ) v 0 = v g v p ( d ) v 2 0 = 1 /v g v p

9 . T h e c u t - o ff wave l e n g th f or a T E M wave i s
( a) H i g h ( b ) I n fi n i ty ( c ) Z e ro ( d ) L ow

1 0. I f a d i e l e c t r i c o f ∈ r = 4 i s fi l l e d i n b e twe e n p a ra l l e l p l at e wave gu i d e t h e n t h e ve l o c i ty o f wave p ro p a ga t i on i s
( a) 6 x1 0 8 m / s ( b ) 1 . 5 x1 0 8 m / s ( c ) 3 x1 0 8 m / s ( d ) 4 . 5 x1 0 8 m / s . .

1 1. I n s ol v i n g t r an s m i s s i o n l i n e p r o b l e m s we u s e t h e f o l l ow i n g c i r c u i t q u ant i t i e s
( a) D a n d B ( b ) E an d H ( c ) V a n d I ( d ) J a n d E

1 2. I n a t r a n s m i s s i o n l i n e w h e n t e r m i n at i o n i m p e d a n c e i s e q u a l t o ch ar a c t e ri s ti c i m p e d a n c e of th a t l i n e t h e n th e r e fl e c t i o n c o e ffi c i e nt i s
( a) Z e ro ( b ) E q u a l t o t ra n s m i s s i on c o e ffi c i e nt ( c ) U n i ty ( d ) I n fi n i ty

1 3. Fo r a l o s s l e s s l i n e t h e l i n e ch ar a c t e r i s t i c s r e p e at f or e ve r y ( a) λ / 4 ( b ) 3 λ / 4 ( c ) λ ( d ) λ / 2

1 4. Fo r o c e a n c ab l e s t h e ty p e o f l oa d i n g u s e d i s
( a) L u m p e d l oa d i n g ( b ) Pa tch l oa d i n g ( c ) C o nti nu o u s l o ad i n g ( d ) U n m a tch e d l oa d i n g

1 5. O n e n e p e r i s e qu a l t o
( a) 6 . 86 d B ( b ) 1 0 d B ( c ) 8 . 86 d B ( d ) 8 . 68 d B

1 6. T h e S W R of a t ra n s m i s s i on l i n e w h i ch i s t e r m i n a te d w i t h i t s ch ar a c t e r i s t i c i m p e da n c e s g i ve n by
( a) 2 ( b ) i n fi n i ty ( c ) z e r o ( d ) 1

1 7. w h e n th e l e n g t h o f a l i n e i s a n i nt e g ra l mu l t i p l e s of λ / 2 th e n Ta n β l i s e q u a l t o
( a) T wo ( b ) Z e ro ( c ) I n fi n i ty ( d ) U n i ty

1 8. O n a s m i t h ch a r t f o r x =0 c i r c l e s t h e c e nte r i s a t
( a) ( 1, 1 ) ( b ) ( 1, 0 ) ( c ) ( 0 , ∞ ) ( d ) ( 1 , ± ∞ )

1 9. A s tu b w i t h a s h o r t c i r c u i t e d l o ad off e r s
( a) P u r e re s i s t an c e ( b ) C a p ac i ti ve r e a c t a n c e ( c ) I m p e d an c e ( d ) I n d u c t i ve r e a c t an c e

2 0. I f t h e p h a s e c on s t a nt on t h e l i n e i s 2 π r ad / m , th e d i s t a n c e b e twe e n two s u c c e s s i ve m ax i m a i s
( a) 5 0 c m ( b ) 3 0 c m ( c ) 2 0 c m ( d ) 4 0 c m

D C B D B C D A B B C A D C D D B D D A

EMWT ONLINE 8

1 . T h e i d e al c o n d u c t i n g b ou n d a r y i s a n a l og ou s t o
( a) O p e n c i r c u i t on th e t ra n s m i s s i on l i n e ( b ) S h o rt c i rc u i t on t h e t r an s m i s s i on l i n e ( c ) T h e t ra n s m i s s i on l i n e t e r m i n at e d w i t h i t s ch a r ac te r i s t i c i m p e d a n c e ( d ) T h e t ra n s m i s s i on l i n e t e r m i n at e d w i t h a ny l oa d .

2 . I n th e c a s e of p e r p e n d i c u l a r p o l ar i z a t i on
( a) T h e H i s Par a l l e l t o t h e p l a n e of i n c i d e n c e an d p e r p e n d i c u l a r t o t h e r e fl e c ti n g s u r f a c e ( b ) T h e E i s p e r p e n d i c u l ar t o t h e p l a n e of i n c i d e n c e an d p ar a l l e l t o t h e r e fl e c ti n g s u rf ac e ( c ) T h e H i s p e r p e n d i c u l a r t o t h e p l a n e o f i n c i d e n c e an d p ar a l l e l t o t h e r e fl e c ti n g s u r f a c e ( d ) T h e E i s p a ra l l e l t o t h e p l an e of i n c i d e n c e an d p e r p e n d i c ul a r t o t h e r e fl e c ti n g s u rf ac e

3 . B r e w s t e r a n gl e c on c e p t i s ap p l i c a b l e f or
( a) Pa ra l l e l p ol a r i z at i o n ( b ) E l l i p t i c a l p o l ar i z a t i on ( c ) L i n e a r p ol a r i z a ti o n ( d ) Pe r p e n d i c u l a r p o l a ri z at i on

4 . Poy nt i n g t he or e m i s s t r i c t l y val i d f or
( a) A ny c l o s e d s u r f ac e ( b ) O p e n s u rf ac e on l y ( c ) Fr e e s p a c e ( d ) S p h e r i c a l s u r f a c e on l y

5 . W h e n th e a n gl e of i n c i d e n c e i s e qu a l t o c r i t i c a l a n gl e t h e n t h e a n g l e o f t r a n s m i s s i o n i s
( a) 1 80 0 ( b ) 6 0 0 ( c ) 9 0 0 ( d ) 4 5 0

6 . Fo r t h e wave p r op a g at i o n i n z d i r e c t i on
( a) T h e r e mu s t b e a y c o m p on e nt o f E o r H ( b ) T h e r e mu s t b e a x c o m p on e nt o f E o r H ( c ) T h e r e mu s t b e a x an d y c o m p on e nt s of E or H ( d ) T h e r e mu s t b e a z c o m p o n e nt of E or H

7 . I f f r e q u e n c y i s l e s s t h an c r i ti c al f r e q u e n c y t h e n t h e gu i d e d wave b e twe e n p a ra l l e l c on d u c t i n g p l a n e s
( a) P r o gr e s s e s w i th o u t a ny at t e nu at i o n ( b ) At te nu a t e s l i n e ar l y ( c ) H ave va l u e f o r p h a s e c on s t a nt ( d ) At te nu a t e s e x p on e nt i a l l y

8 . G r o u p ve l o c i ty , p h as e ve l o c i ty an d f r e e s p ac e ve l o c i ty ar e r e l a t e d by
( a) v 2 0 = v g v p ( b ) v 0 = v g / v p ( c ) v 2 0 = 1 /v g v p ( d ) v 0 = v g v p

9 . T E M wave e x i s t s i n
( a) A h o l l ow wave g u i d e ( b ) B e twe e n p ar a l l e l p l a t e s ( c ) A d i e l e c t r i c fi l l e d wave g u i d e ( d ) A m i c ro s tr i p

1 0. W h e n a wave i s tr ave l i n g i n Z d i re c ti o n , t h e n i t s i mp e d an c e i s gi ve n by
( a) E x / H y ( b ) - E x / H y ( c ) E y / H x ( d ) - E y / H x

1 1. T h e l i n e p a r am e t e r s R, L , G , C a r e
( a) D i s c r e t e ( b ) U n i f o r m l y d i s t r i bu t e d ( c ) L u m p e d ( d ) N o n u n i f o r m ly d i s t ri b u t e d

1 2. I n a tr a n s m i s s i o n l i n e t h e d i s t a n c e b e twe e n two s u c c e s s i ve m i n i m a i s
( a) λ / 2 ( b ) λ / 4 ( c ) λ ( d ) λ / 3

1 3. Fo r a l o s s l e s s l i n e i f Z L = Z 0 , t h e i m p e d a n c e a t a ny p oi nt o n t h e l i n e i s
( a) Z L / Z 0 , ( b ) Z L Z 0 , ( c ) Z 0 ( d ) Z L

1 4. T h e l oa d i n g c o i l s a r e
( a) D i s t r i b u te d i n d u c t or ( b ) D i s t r i b u te d c a p ac i t o r ( c ) L u m p e d i n du c to r s ( d ) L u m p e d c ap a c i t or s

1 5. A l ow l o s s t ra n s m i s s i on l i n e o p e r at i n g a t 10 0 M H z h a s L = 0. 2 5 m i c r o h e n r y/ m , C = 1 00 p F / m . T h e n t h e p h as e c o n s t ant i s
( a) π ( b ) 3 π ( c ) 1 / π ( d ) 2 π

1 6. I f π / 2 < β l < π , t h e i n p u t i m p e d a n c e o f s h or t c i rc u i te d l i n e w i l l b e (
a) C o m p l e x q u ant i ty ( b ) C a p ac i ti ve ( c ) I n d u c t i ve ( d ) R e s i s t i ve

1 7. Q u ar t e r wave tr a n s f o r me r i s
( a) Fr e q u e n c y s e n s i t i ve d e v i c e ( b ) C u r r e nt s e n s i ti ve d e vi c e ( c ) Vo l t ag e s e n s i t i ve d e v i c e ( d ) Powe r s e n s i t i ve d e v i c e


1 8. O n a s m i t h ch a r t f o r x =0 c i r c l e s t h e c e nte r i s a t ( a) ( 0 , ∞ ) ( b ) ( 1, 1 ) ( c ) ( 1, 0 ) ( d ) ( 1 , ± ∞ )

1 9. I n th e s i n g l e s tu b m at ch i n g t h e l o c a t i on of t h e s t u b ch a n g e s w i th
( a) Fr e q u e n c y ( b ) S o u rc e i m p e d a n c e ( c ) C h a r ac t e r i s t i c i m p e d a n c e ( d ) L oa d i m p e d an c e

2 0. A c e r ta i n l ow l o s s l i n e h a s Z 0 = 4 00 o h m s . Fo r Z L = 2 00 o h m s , t h e S W R i s
( a) 4 ( b ) 2 ( c ) 1 / 2 ( d ) 1 /3

B B A A C C D A B A B A C C A B B D A B

EMWT ONLINE 7

1 . T h e c o nd u c ti v i ty o f a n i d e a l c o n d u c t or i s
( a) U n i ty ( b ) T wo ( c ) I n fi n i ty ( d ) Z e ro

2 . T h e d i m e n s i o n o f a r e fl e c ti o n c o e ffi c i e nt i s
( a) V / A ( b ) V / m ( c ) A / m ( d ) N o u n i t

3 . U n d e r t o t al i nt e r n a l r e fl e c t i o n t h e r e fl e c t i on c o e ffi c i e nt f o r b o th p o l ar i z a t io n s i s
( a) A n i m a g i n ar y q u ant i ty ( b ) M ay b e re al o r i m a gi n a r y q u ant i ty
( c ) A c om p l e x q u a nti ty ( d ) A r e a l q u a nt i ty

4 . . E l e c t ri c an d m ag n e t i c fi e l d s w h i ch ar e p ar a l l e l
( a) C o n s t i t u te i n fi n i t e p owe r fl ow ( b ) C o n s t i t u te u n i t m a gn i t u d e p owe r fl ow
( c ) D o n ot c on s ti t u t e a ny p owe r fl ow ( d ) C o n s t i t u te a p owe r fl ow

5 . A u n i f o r m p l an e wave t r ave l i n g i n ai r w i t h a p owe r d e n s i ty of 2W / m 2 . T h e n t h e e l e c t ri c fi e l d s t r e n gt h o f t h e wave i s
( a) η 0 / 2 ( b ) 2 η 0 ( c ) 2 s q r t ( η 0 ) ( d ) S q r t ( 2 η 0 )

6 . T h e wave a l on g a c o- ax i al t ra n s m i s s i on l i n e i s an e x am p l e f o r
( a) L i ght wave ( b ) U n g u i d e d wave ( c ) G u i d e d wave ( d ) U n i f o r m p l a ne wave

7 . T h e l owe s t or d e r m o d e of T E wave s b e twe e n p a ra l l e l c on d u c to r s
( a) T E 1 1 ( b ) T E 1 0 ( c ) T E 1 2 ( d ) T E 0 0

8 . T h e ve l o c i ty o f p r o p ag a ti o n o f e qu i p h a s e s u r f a c e s a l o n g th e g u i d e i s
( a) P h a s e ve l o c i ty ( b ) G r o u p ve l o c i ty ( c ) L i ght ve l o c i ty ( d ) G u i d e ve l o c i ty

9 . T E M m o d e i s e q u al t o
( a) T M 0 0 ( b ) T E 1 0 ( c ) T M 1 0 ( d ) T E 0 0

1 0. T h e wave i m p e d an c e f o r a z d i r e c te d T M wave i s
( a) η c o s θ ( b ) 1 / η ( c ) η / c o s θ ( d ) η

1 1. Pa ra l l e l p l at e t r an s m i s s i o n l i n e f a b r i c a te d o n a d i e l e c t r i c s u b s t r a te u s i n g p r i nt e d c i r c u i t te ch n ol o gy of te n c al l e d a s
( a) S t r i p l i n e ( b ) I nt e g ra t e d c i rc u i t ( c ) Wave g u i d e ( d ) R e s o n at o r

1 2. I n a tr a n s m i s s i o n l i n e t h e vol t a ge a n d c u r r e nt s t an d i n g wave s a re
( a) 0 0 o u t of p h a s e a l on g t h e l i n e
( b ) 2 70 0 o u t of p h a s e a l on g t h e l i n e ( c ) 9 0 0 o u t of p h a s e a l on g t h e l i n e ( d ) 1 80 0 o u t of p h a s e a l on g t h e l i n e

1 3. Fo r a l o s s l e s s l i n e t h e ch a ra c t e r i s t i c i m p e d an c e i s ( a) Z 0 = S q r t ( LC ) ( b ) R 0 = S q r t ( 1 / L C ) ( c ) R 0 = S q r t ( L / C ) ( d ) Z 0 = S q r t ( C / L )

1 4. H y s t e r e s i s an d e d d y c u r r e nt l o s s e s i n l o ad i n g c oi l s l e ad s t o ( a) D e c r e a s e i n R ( b ) D e c r e a s e i n L ( c ) I n c r e a s e i n R ( d ) I n c r e a s e i n L

1 5. A t ra n s m i s s i on l i n e op e r at i n g a t 1 G H z h as L = 1 m i c r o h e n r y / m , C = 1p F / m , R = G = 0. T h e n i t s ch ar a c te ri s ti c a d m i tt a n c e i s ( a) 1 0 m h os ( b ) 0 . 00 1 m h os ( c ) 0 . 1 m h os ( d ) 0 . 01 m h o s

1 6. T h e S W R of a t ra n s m i s s i on l i n e w h i ch i s t e r m i n a te d w i t h i t s ch ar a c t e r i s t i c i m p e da n c e s g i ve n by
( a) i n fi n i ty ( b ) z e r o ( c ) 1 ( d ) 2

1 7. W h i ch o f t h e f o l l ow i n g i s a on e t o on e t ra n s f o r m e r
( a) λ l i n e ( b ) λ / 2 l i n e ( c ) λ / 8 l i n e ( d ) λ / 4 l i n e

1 8. T h e s m i t h ch a rt c an b e u s e d a s
( a) A d m i t t an c e ch ar t o n l y ( b ) N o rm a l i z e d ad m i t t an c e ch a r t on l y ( c ) I m p e d an c e ch ar t a s we l l a s A d m i t t a n c e ch a r t ( d ) I m p e d an c e ch ar t o n l y

1 9. A s i n gl e s t u b m a tch i n g i s a (
a) B r o ad b an d s y s t e m ( b ) B a n d r e j e c t s y s t e m ( c ) N a rr ow b a n d s y s t e m ( d ) Pa s s b a n d s ys te m

2 0. Fo r a q u ar t e r wave t r an s f o r m e r β l i s e q u a l t o
( a) 2 π ( b ) π / 2 ( c ) π ( d ) π / 4

C D C C C C B A A A A C C C B C B C C B

EMWT ONLINE 7

1 . Fo r n o r m al i n c i d e n c e of a wave o n d i e l e c tr i c - c o n d u c t or i nt e r f a c e t h e m ag n i t u d e o f r e fl e c ti o n c o e ffi c i e nt i s
( a) I n fi n i ty ( b ) I n b e twe e n 0 a n d 1 ( c ) Z e ro ( d ) U n i ty

2 . T h e r an g e o f r e fl e c t i on c o e ffi c i e nt i s
( a) - 1 t o 1 ( b ) - i n fi n i ty t o + i n fi n i ty ( c ) 0 t o i n fi n i ty ( d ) 0 t o 1

3 . W h e n i n c i d e nt an g l e i s B re w s t e r a n gl e t h e n
( a) N o r e fl e c t i o n t ake s p l ac e ( b ) Pa rt i a l t r an s m i s s i on on l y ta ke s p l a c e ( c ) C o m p l e t e r e fl e c ti o n t a ke s p l a c e ( d ) Pa rt i a l r e fl e c t i o n o n l y t ake s p l ac e

4 . T h e p o i nt i n g ve c t or gi ve s
( a) T h e d i r e c t i on of E fi e l d ( b ) T h e d i r e c t i on of wave p r o p ag at i o n ( c ) T h e d i r e c t i on of b o th E a n d H fi e l d s ( d ) T h e d i r e c t i on of H fi e l d

5 . T h e m ag n e t i c fi e l d a t t h e s u r f a c e o f a g o o d c on d u c to r i s 2 A /m . T h e f r e q u e n c y of t h e fi e l d i s 6 00 M H z . T h e s u rf ac e r m s c u rr e nt d e n s i ty i s
( a) 2 A / m 2 ( b ) 1 /2 A / m ( c ) 2 A / m ( d ) 1 /2 A / m 2

6 . T h e wave a l on g a c o- ax i al t ra n s m i s s i on l i n e i s an e x am p l e f o r
( a) L i ght wave ( b ) G u i d e d wave ( c ) U n i f o r m p l a ne wave ( d ) U n g u i d e d wave

7 . T h e e q u i p h as e s u r f a c e s p r og r e s s e s a l on g t h e g u i d e w i t h a ve l o c i ty ( a) ω / ss ( b ) ss / ω ( c ) d ω / d ss ( d ) L i ght ve l o c i ty

8 . T h e ve l o c i ty o f p r o p ag a ti o n o f e qu i p h a s e s u r f a c e s a l o n g th e g u i d e i s
( a) P h a s e ve l o c i ty ( b ) G u i d e ve l o c i ty ( c ) G r o u p ve l o c i ty ( d ) L i ght ve l o c i ty

9 . T E M m o d e i s e q u al t o
( a) T M 1 0 ( b ) T E 0 0 ( c ) T M 0 0 ( d ) T E 1 0

1 0. T h e wave i m p e d an c e ove r t h e c r os s s e c ti o n o f th e gu i d e i s
( a) D e c r e a s e s w i t h f r e q u e n c y ( b ) I n c r e a s e s w i t h f re qu e n c y ( c ) I n c r e a s e s e x p o n e nti a l l y ( d ) C o n s t ant

1 1. I n a c oa x i al t ra n s m i s s i on l i n e e l e c tr i c an d m ag n e t i c fi e l d s a re
( a) C o n fi n e d t o a d i e l e c tr i c m e d i u m ( b ) C o n fi n e d t o t h e i n n e r c on d u c to r ( c ) N o t C o n fi n e d t o d i e l e c t r i c me d i u m ( d ) C o n fi n e d t o t h e o u t e r c o n d u c t or

1 2. I n a tr a n s m i s s i o n l i n e t h e vol t a ge a n d c u r r e nt s t an d i n g wave s a re
( a) 9 0 0 o u t of p h a s e a l on g t h e l i n e ( b ) 0 0 o u t of p h a s e a l on g t h e l i n e ( c ) 1 80 0 o u t of p h a s e a l on g t h e l i n e ( d ) 2 70 0 o u t of p h a s e a l on g t h e l i n e

1 3. Fo r a l ow l o s s l i n e t h e p h a s e ve l o c i ty i s
( a) I n c r e a s e s w i t h s qu a r e o f f re qu e n c y ( b ) A p p r ox i m a te ly c on s ta nt ( c ) I n c r e a s e s w i t h f re qu e n c y ( d ) D e c r e a s e s w i t h f r e q u e n c y

1 4. A l u m p e d l o ad e d l i n e s b e h ave s as a ( a) B a n d r e j e c t fi l t e r ( b ) B a n d p a s s fi l t e r ( c ) H i g h p a s s fi l t e r ( d ) L ow p as s fi l t e r

1 5. O n e n e p e r i s e qu a l t o
( a) 8 . 86 d B ( b ) 1 0 d B ( c ) 6 . 86 d B ( d ) 8 . 68 d B

1 6. t h e r e fl e c t io n c o e ffi c i e nt f o r a s h o rt c i r c u i t e d t r an s m i s s i on l i n e i s ( a) I n fi n i ty ( b ) - 1 ( c ) Z e ro ( d ) + 1

1 7. A λ / 4 l i n e m ay b e c on s i d e re d a s
( a) Vo l t ag e i nve r t e r ( b ) Powe r i nve r t e r ( c ) C u r r e nt i nve r t e r ( d ) I m p e d an c e i nve r t e r

1 8. T h e u p p e r h a l f o f th e s m i t h ch a r t r e p re s e nt s
( a) + j x ( b ) ± j x ( c ) r ( d ) - j x

1 9. I n a s t u b m at ch i n g i t i s m o re c o nve n i e nt t o s o l ve t h e p r o b l e m u s i n g ( a) I m p e d an c e ( b ) R e ac ta n c e ( c ) A d m i t t an c e ( d ) R e s i s t a n c e


2 0. I f S W R = 1 t h e n t h e r e fl e c t i on c o e ffi c i e nt i s
( a) T wo ( b ) I n fi n i ty ( c ) O n e ( d ) Z e ro


D A A B C B A A C D A A B D D D D A C D

EMWT ONLINE 6

1 . Fo r n o r m al i n c i d e n c e of a wave o n d i e l e c tr i c - c o n d u c t or i nt e r f a c e t h e m ag n i t u d e o f r e fl e c ti o n c o e ffi c i e nt i s
( a) Z e ro ( b ) I n b e twe e n 0 a n d 1 ( c ) U n i ty ( d ) I n fi n i ty

2 . I f Γ i s re fl e c t i on c o e ffi c i e nt a n d T i s t ra n s m i s s i on c o e ffi c i e nt t h e n
( a) l Γ l = 1+ T ( b ) T = 1 +Γ ( c ) l Γ l = 1 - T ( d ) T = 1 - l Γ l

3 . . B r e w s t e r a n gl e Θ i s gi ve n by
( a) Tan Θ =S q r t ( ∈ 1 / ( ∈ 1 + ∈ 2 ) ) ( b ) Tan Θ =S q r t (( ∈ 1 + ∈ 2 ) / ∈ 1 )
( c ) Tan Θ =S q r t ( ∈ 2 / ∈ 1 ) ( d ) Tan Θ =S q r t ( ∈ 1 / ∈ 2 )

4 . T h e u n i t f o r p o i nt i n g ve c t or i s
( a) Wa t t s ( b ) Wa t t s /m ( c ) Wa t t s /m 3 ( d ) Wa t t s /m 2

5 . A u n i f or m p l a n e wave i s n or m a ll y i n c i d e nt o n a d i e l e c t r i c ( ∈ r = 4) . T h e n t h e t r an s m i s s i o n c o e ffi c i e nt i s
( a) 1 /2 ( b ) 2 /3 ( c ) 3 /2 ( d ) 1 /3

6 . G u i d e d wave s ar e th e wave s
( a) T h a t a re gu i d e d a l on g o r ove r c o n d u c t i n g or d i e l e c t r i c s u rf a c e ( b ) L i ght wave s ( c ) Wave s t h a t ar e p ro p a ga t i n g w i th i n t h e c o n d u c t or . ( d ) U n i f o r m p l a ne wave s p r op a ga t i n g i n t h e f re e s p a c e

7 . O th e r n am e of T E wave i s
( a) U n i f o r m p l a ne wave ( b ) E wave ( c ) E & H wave ( d ) H wave

8 . Fo r a z d i r e c t e d T M wave
( a) H = 0 ( b ) H z = 0 ( c ) E z = 0 ( d ) H z = E z = 0

9 . T h e c u t - o ff wave l e n g th f or a T E M wave i s
( a) H i g h ( b ) Z e ro ( c ) I n fi n i ty ( d ) L ow

1 0. C o n s i d e r a wave p r op a ga t i n g i n p a ra l l e l c on d u c t i n g p l a t e s s e p ar a te d w i t h v p = 6 × 1 0 8 m / s . T h e n v g i s
( a) 1 . 5 x1 0 8 m / s ( b ) 1 / 3 x1 0 8 m / s ( c ) 6 x1 0 8 m / s ( d ) 3 x1 0 8 m / s

1 1. T h e e l e c t r i c a l l e n g t h o f t h e t r a n s m i s s i o n l i n e i s e qu a l t o
( a) P hy s i c a l l e n g t h ( b ) β z ( c ) 2 β z ( d ) 0 . 5 β z

1 2. W h e n th e d i e l e c t r i c of a l os s y m i c r owave t ra n s m i s s i on l i n e i s n ot a i r , t h e n th e p h as e ve l o c i ty
( a) G r e a t e r t h an ve l o c i ty o f l i g ht i n vac u u m ( b ) I nve r s e l y p r o p or t i on a l t o t h e ve l o c i ty o f l i g ht i n va c u u m ( c ) E q u a l t o t he ve l o c i ty of l i ght i n va c u u m
( d ) S m a l l e r t h an ve l o c i ty o f l i g ht i n vac u u m

1 3. Fo r a l o s s l e s s l i n e i f Z L = Z 0 , t h e i m p e d a n c e a t a ny p oi nt o n t h e l i n e i s ( a) Z 0 ( b ) Z L ( c ) Z L Z 0 , ( d ) Z L / Z 0 ,


1 4. T h e l oa d i n g c o i l s a r e
( a) L u m p e d i n du c to r s ( b ) D i s t r i b u te d c a p ac i t o r ( c ) L u m p e d c ap a c i t or s ( d ) D i s t r i b u te d i n d u c t or

1 5. A l o s s l e s s l i n e h as Z 0 = 10 0 o h m s a n d β = 10 r ad / m op e ra t i n g a t 10 0 M H z . T h e n t h e c ap a c i t an c e of t h e l i n e p e r m e t e r i s
( a) 1 00 f a r ad s /m ( b ) 1 . 0 n an o f a r ad / m ( c ) 1 . 0 m i c r o f ar a d /m ( d ) 1 . 0 p F / m

1 6. I f β l < π / 2 , t h e i n p u t i m p e d an c e o f a o p e n c i r c u i te d l i n e w i l l b e
( a) R e s i s t i ve ( b ) C a p ac i ti ve ( c ) I n d u c t i ve ( d ) C o m p l e x q u ant i ty

1 7. A s h or t c i r c u i t e d λ / 4 l i n e c a n b e u s e d as
( a) A c ap a c i t or ( b ) A n i n s u l at o r ( c ) A n i n d u c to r ( d ) A c on d u c t o r

1 8. O n a s m i t h ch a r t r e al Γ ax i s re p r e s e nts
( a) P u r e l y r e s i s t i ve i m p e d a n c e ( b ) P u r e l y r e a c t i ve i m p e d a n c e ( c ) A ny a d m i tt a n c e ( d ) A ny i m p e d a n c e

1 9. I n th e s i n g l e s tu b m at ch i n g t h e l o c a t i on of t h e s t u b ch a n g e s w i th
( a) S o u rc e i m p e d a n c e ( b ) C h a r ac t e r i s t i c i m p e d a n c e ( c ) Fr e q u e n c y ( d ) L oa d i m p e d an c e

2 0. A c e r ta i n l ow l o s s l i n e h a s Z 0 = 4 00 o h m s . Fo r Z L = 2 00 o h m s , t h e S W R i s

( a) 2 ( b ) 1 /3 ( c ) 4 ( d ) 1 / 2

Cbcdb adbca bdaab bbaca

EMWT ONLINE 5

1 . Fo r n o r m al i n c i d e n c e of th e wave on p e r f e c t c on d u c t o r
( a) S u r f a c e c u r r e nt e x i s t ( b ) Fr e e ch ar g e e xi s ts o n t h e s u rf ac e ( c ) C o n d u c t i on c u r re nt e xi s t ( d ) S u r f a c e c u r r e nt d o e s n t e xi s t

2 . I n th e c a s e of p e r p e n d i c u l a r p o l ar i z a t i on
( a) T h e H i s p e r p e n d i c u l a r t o t h e p l a n e o f i n c i d e n c e an d p ar a l le l t o t h e r e fl e c ti n g s u r f a c e
( b ) T h e E i s p a ra l l e l t o t h e p l an e of i n c i d e n c e an d p e r p e n d i c ul a r t o t h e r e fl e c ti n g s u rf ac e
( c ) T h e H i s Par a l l e l t o t h e p l a n e of i n c i d e n c e an d p e r p e n d i c u l a r t o t h e r e fl e c ti n g s ur f a c e
( d ) T h e E i s p e r p e n d i c u l ar t o t h e p l a n e of i n c i d e n c e an d p ar a l l e l t o t h e r e fl e c ti n g s u rf ac e

3 . T h e c r i ti c al an g l e i s g i ve n by
( a) Tan Θ = S q r t ( ∈ 2 / ∈ 1 ) ( b ) Tan Θ = S q r t ( ∈ 1 / ∈ 2 ) ( c ) S i n Θ = S q r t ( ∈ 1 / ∈ 2 ) ( d ) S i n Θ = S q r t ( ∈ 2 / ∈ 1 )

4 . T h e p o i nt i n g ve c t or gi ve s
( a) T h e d i r e c t i on of E fi e l d ( b ) T h e d i r e c t i on of wave p r o p ag at i o n ( c ) T h e d i r e c t i on of H fi e l d ( d ) T h e d i r e c t i on of b o th E a n d H fi e l d s

5 . I f r e fl e c t i o n c o e ffi c i e nt = - 1 / 2 t h e n t h e s w r i s
( a) O n e ( b ) Z e ro ( c ) 3 ( d ) 1 /3

6 . Fo r a z p r op a ga t i n g e m wave , i f p ro p a ga ti o n c on s t a nt i s r e a l t h e n (
a) N o wave m ot i on ( b ) T h e wave t r ave l s i n z d i re c ti o n ( c ) Wave t r ave l s w it h an e x p on e nt i a l d e c r e a s e i n a m p l i tu d e ( d ) Wave t r ave l s w it h n o ch an g e i n am p l i t u d e

7 . O th e r n am e of T E wave i s
( a) U n i f o r m p l a ne wave ( b ) H wave ( c ) E wave ( d ) E & H wave

8 . I f op e r at i n g f r e q u e n c y i s g re at e r t h a n t h e c u to ff wave l e n gt h , th e n
( a) α = β ( b ) α = Z e ro ( c ) α = i n fi n i ty ( d ) α = 1 / β

9 . A m o d e w h i ch d o e s n ot p ro p a ga te i s
( a) E van e s c e nt m o d e ( b ) D om i n a nt m o d e ( c ) P r i n c i p a l wave ( d ) T E m o d e

1 0. W h e n a wave i s tr ave l i n g i n Z d i re c ti o n , t h e n i t s i mp e d an c e i s gi ve n by ( a) - E y / H x ( b ) E y / H x ( c ) E x / H y ( d ) - E x / H y

1 1. A two c o n d u c t or t r a n s m i s s i o n l i n e s u p p o rt s
( a) T E M m o d e wave ( b ) T M m o d e wave on l y ( c ) T E m o d e wave on l y ( d ) B o t h T E a n d T M m o d e wave s

1 2. T h e u n i t f o r at t e nu a ti o n c o n s t a nt i s
( a) d B / m ( b ) Vo l t /m ( c ) A m p . / m ( d ) R ad i a n / m

1 3. A l o s s y tr a n s m i s s i o n l i n e
( a) N o n D i s p e r s i ve ( b ) I t mu s t b e a d i s to r ti o n l e s s l i n e
( c ) H ave i n fi n i te l os s ( d ) D i s p e r s i ve



1 4. I f L T a n d C T a re t h e to t al i n d u c t an c e a n d to t al c a p ac i t a n c e of t h e l i ne i n c l u d i n g th e l o ad i n g c o i l s , t h e n i t s c u t o ff f r e q u e n c y i s g i ve n by
( a) 1 / ( π . s q r t (L T C T ) ) ( b ) π / s q r t (L T C T ) ( c ) π . s q r t (L T C T ) ( d ) 1 / ( 2 π . s q r t (L T C T ) )

1 5. A l ow l o s s t ra n s m i s s i on l i n e o p e r at i n g a t 10 0 M H z h a s L = 0. 2 5 m i c r o h e n r y/ m , C = 1 00 p F / m . T h e n t h e p h as e c o n s t ant i s
( a) 1 / π ( b ) 2 π ( c ) π ( d ) 3 π


1 6. I n p u t i m p e d an c e o f a s h o r t c i r c u i t e d t r a n s m i s s i o n l i n e b e c o m e s
( a) P u r e re s i s t i ve ( b ) c o m p l e x q u ant i ty ( c ) Z e ro ( d ) P u r e re ac t i ve

1 7. A s h or t c i r c u i t e d λ / 4 l i n e c a n b e u s e d as
( a) A c ap a c i t or ( b ) A n i n d u c to r ( c ) A n i n s u l at o r ( d ) A c on d u c t o r

1 8. O n a t ra n s m i s s i on l i n e V m a x a n d V m i n a re s e p a r at e d by th e d i s t a n c e o f ( a) λ / 8 ( b ) λ / 2 ( c ) λ / 4 ( d ) λ


1 9. T h e s t u b l e n g t h t o b e ad j u s t e d
( a) To n e u t ra l i z e th e s u s c e p t an c e of t h e l o a d ( b ) To i n c r e as e t h e s u s c e p t a n c e o f th e l oa d ( c ) To d e c r e as e t h e s u s c e p t a n c e of t h e l o ad ( d ) N o t t o ch an g e t h e s u s c e p t a n c e of t he l o ad

2 0. T wo ve r y l o n g l o s s l e s s c ab l e s of ch a r ac te ri s ti c i mp e d an c e s o f 36 oh m s an d 1 00 oh m s r e s p e c t i ve l y a r e t o b e j oi n e d f o r r e fl e c t i o n l e s s t r an s m i s s i on . T h e Z 0 o f a m a tch i n g t r a n s f o rm e r i s
( a) 3 6 oh m s ( b ) 1 /3 6 oh m s ( c ) 6 0 oh m s ( d ) 1 00 o h m s

ADDBC ABBAC AADAC DCCAC

EMWT ONLINE 4

1 . At t h e d i e l e c t ri c c o n d u c t or i nt e r f a c e
( a) T h e H i s h al f of t h e i n c i d e nt fi e l d ( b ) T h e E i s h al f o f t h e i n c i d e nt fi e l d ( c ) T h e E i s d ou b l e o f t h e i n c i d e nt fi e l d
( d ) T h e H i s d ou b l e of t h e i n c i d e nt fi e l d

2 . T h e e x p re s s i o n f o r s n e l l s l aw i s
( a) S i n Θ 2 / S i n Θ 1 = S q r t( ∈ 2 / ∈ 1 ) ( b ) S i n Θ 1 / S i n Θ 2 = S q r t( ∈ 1 / ( ∈ 1 + ∈ 2 ) ) ( c ) S i n Θ 1 / S i n Θ 2 = S q r t( ∈ 2 / ( ∈ 1 + ∈ 2 ) )
( d ) S i n Θ 1 / S i n Θ 2 = S q r t( ∈ 2 / ∈ 1 )

3 . T h e To t al i nt e r n a l r e fl e c t i o n c a n t a ke s p l a c e
( a) I f t h e wave tr ave l s f r o m D e n s e r to D e n s e r m e d i u m ( b ) I f t h e wave tr ave l s f r o m R ar e r t o D e n s e r m e d i u m ( c ) I f t h e wave tr ave l s f r o m R ar e r t o R ar e r m e d i u m ( d ) I f t h e wave tr ave l s f r o m D e n s e r to R ar e r m e d i u m

4 . S u r f a c e i m p e d an c e i s a u s e f u l p a r am e te r i n c o m p u t i n g
( a) Poy nt i n g ve c to r ( b ) D i e l e c t r i c l o s s e s ( c ) M a gn i t u d e of e l e c t r i c fi e l d ( d ) C o n d u c t or l o s s e s

5 . A u n i f o r m p l a n e wave h avi n g 2 5 W / m 2 p owe r d e n s i ty i s n o r m al l y i n c i d e nt o n a d i e l e c tr i c s h e e t . I f t h e t ra n s m i s s i on c o e ffi c i e nt i s 3 /5 t h e n th e p owe r d e n s i ty o f t h e t r a n s m i t te d wave i s
( a) 1 8 W /m 2 ( b ) 2 7 W /m 2 ( c ) 1 5 W /m 2 ( d ) 9 W / m 2

6 . I f t h e p r o p ag at i o n c o n s t ant i s a r e al q u ant i ty th e n t h e wave
( a) I n c r e a s e s l i n e a r l y
( b ) D e c r e a s e s e x p o ne nt i a l l y ( c ) D e c r e a s e s l i n e a rl y ( d ) I n c r e a s e s e x p o n e nti a l l y

7 . T h e l owe s t or d e r m o d e of T E wave s b e twe e n p a ra l l e l c on d u c to r s ( a) T E 1 1 ( b ) T E 1 0 ( c ) T E 1 2 ( d ) T E 0 0

8 . T h e p r op a ga t i on c on s ta nt b e twe e n p ar a l l e l p l a te s i s
( a) ( m π / a ) 2 + (n π / b ) 2 - ω 2 µ 0 ε 0
( b ) ( m π / a ) 2 - ω 2 µ 0 ε 0 ( c ) ( m π / a ) 2 + ω 2 µ 0 ε 0 ( d ) ( m π / a ) 2 + (n π / b ) 2 + ω 2 µ 0 ε 0

9 . At te nu a t i on f ac to r f o r a T E M wave i s p r o p or t i o n al to
( a) S q r t( Fr e q u e n c y ) ( b ) Z 0 ( c ) Fr e q u e n c y ( d ) C o n d u c t i vi ty

1 0. C o n s i d e r a wave p r op a ga t i n g i n p a ra l l e l c on d u c t i n g p l a t e s s e p ar a te d w i t h v p = 6 × 1 0 8 m / s . T h e n v g i s
( a) 1 . 5 x1 0 8 m / s ( b ) 1 / 3 x1 0 8 m / s ( c ) 6 x1 0 8 m / s ( d ) 3 x1 0 8 m / s

1 1. T wo w i r e tr a n s m i s s i o n l i n e s c o n s i s t s of a p a i r of p ar a l l e l c on d u c t i n g w i r e s s e p a r at e d by
( a) I n fi n i t e d i s t an c e ( b ) N o n u n i f o r m d i s t an c e ( c ) Z e ro d i s ta n c e ( d ) U n i f o r m d i s t a n c e

1 2. I n a tr a n s m i s s i o n l i n e t h e d i s t a n c e b e twe e n two s u c c e s s i ve
m i n i m a i s ( a) λ / 3 ( b ) λ / 2 ( c ) λ ( d ) λ / 4


1 3. Fo r a l o s s l e s s l i n e t h e ch a ra c t e r i s t i c i m p e d an c e i s
( a) Z 0 = S q r t ( LC ) ( b ) R 0 = S q r t ( 1 / L C ) ( c ) Z 0 = S q r t ( C / L )
( d ) R 0 = S q r t ( L / C )

1 4. H y s t e r e s i s an d e d d y c u r r e nt l o s s e s i n l o ad i n g c oi l s l e ad s t o
( a) I n c r e a s e i n L ( b ) I n c r e a s e i n R ( c ) D e c r e a s e i n L ( d ) D e c r e a s e i n R

1 5. h i g h f r e q u e n c y l i n e h a s L = 0. 1 m H / K m , C = 0 . 1 m i c r o f ar ad s /K m . I f R & G ar e n e gl i g i b l e , t h e n ch ar a c te ri s ti c i m p e d a n c e i s
( a) 1 00 O h m s ( b ) 5 0 Oh m s ( c ) 4 00 O h m s ( d ) 2 00 O h m s

1 6. T h e i n c i d e nt p owe r i s f u l l y a bs or b e d by t h e l o ad i f
( a) Z L = i n fi n i ty ( b ) Z L = 0 ( c ) Z L  = Z 0 ( d ) Z L = Z 0

1 7. A n e qu a t i on Z i n = Z 2 0 /Z L a p p l i e s t o
( a) λ / 4 l i n e ( b ) λ / 8 l i n e ( c ) λ / 2 l i n e ( d ) λ 1 6 l i n e

1 8. T h e u p p e r h a l f o f th e s m i t h ch a r t r e p re s e nt s ( a) r ( b ) - j x ( c ) ± j x ( d ) + j x

1 9. A s i n gl e s t u b m a tch i n g i s a
( a) B a n d r e j e c t s y s t e m ( b ) N a rr ow b a n d s y s t e m ( c ) Pa s s b a n d s ys te m ( d ) B r o ad b an d s y s t e m

2 0. C o n s i d e r a 5 m l e n g t h t r an s m i s s i on l i n e i s p r op e rl y te rm i n a t e d w i t h 5 0 o h m s L o ad T h e n t h e i n pu t i m p e d a n c e a t 3 m f r o m s o u rc e e n d i s
( a) 1 00 o h m s ( b ) 2 5 oh m s ( c ) 5 0 oh m s ( d ) 7 5 oh




DDDDD BBBAA DBDBA DADBC

EMWT ONLINE 3

1 . Fo r n o r m al i n c i d e n c e of a wave o n d i e l e c tr i c - c o n d u c t or i nt e r f a c e t h e m ag n i t u d e o f r e fl e c ti o n c o e ffi c i e nt i s
( a) I n fi n i ty ( b ) I n b e twe e n 0 a n d 1 ( c ) Z e ro ( d ) U n i ty

2 . T h e r an g e o f r e fl e c t i on c o e ffi c i e nt i s
( a) - 1 t o 1 ( b ) - i n fi n i ty t o + i n fi n i ty ( c ) 0 t o i n fi n i ty ( d ) 0 t o 1

3 . W h e n i n c i d e nt an g l e i s B re w s t e r a n gl e t h e n
( a) N o r e fl e c t i o n t ake s p l ac e ( b ) Pa rt i a l t r an s m i s s i on on l y ta ke s p l a c e ( c ) C o m p l e t e r e fl e c ti o n t a ke s p l a c e ( d ) Pa rt i a l r e fl e c t i o n o n l y t ake s p l ac e

4 . T h e p o i nt i n g ve c t or gi ve s
( a) T h e d i r e c t i on of E fi e l d ( b ) T h e d i r e c t i on of wave p r o p ag at i o n ( c ) T h e d i r e c t i on of b o th E a n d H fi e l d s ( d ) T h e d i r e c t i on of H fi e l d

5 . T h e m ag n e t i c fi e l d a t t h e s u r f a c e o f a g o o d c on d u c to r i s 2 A /m . T h e f r e q u e n c y of t h e fi e l d i s 6 00 M H z . T h e s u rf ac e r m s c u rr e nt d e n s i ty i s
( a) 2 A / m 2 ( b ) 1 /2 A / m ( c ) 2 A / m ( d ) 1 /2 A / m 2

6 . T h e wave a l on g a c o- ax i al t ra n s m i s s i on l i n e i s an e x am p l e f o r
( a) L i ght wave ( b ) G u i d e d wave ( c ) U n i f o r m p l a ne wave ( d ) U n g u i d e d wave

7 . T h e e q u i p h as e s u r f a c e s p r og r e s s e s a l on g t h e g u i d e w i t h a ve l o c i ty
( a) ω / ss ( b ) ss / ω ( c ) d ω / d ss ( d ) L i ght ve l o c i ty

8 . T h e ve l o c i ty o f p r o p ag a ti o n o f e qu i p h a s e s u r f a c e s a l o n g th e g u i d e i s
( a) P h a s e ve l o c i ty ( b ) G u i d e ve l o c i ty ( c ) G r o u p ve l o c i ty ( d ) L i ght ve l o c i ty

9 . T E M m o d e i s e q u al t o
( a) T M 1 0 ( b ) T E 0 0 ( c ) T M 0 0 ( d ) T E 1 0

1 0. T h e wave i m p e d an c e ove r t h e c r os s s e c ti o n o f th e gu i d e i s
( a) D e c r e a s e s w i t h f r e q u e n c y ( b ) I n c r e a s e s w i t h f re qu e n c y ( c ) I n c r e a s e s e x p o n e nti a l l y ( d ) C o n s t ant

1 1. I n a c oa x i al t ra n s m i s s i on l i n e e l e c tr i c an d m ag n e t i c fi e l d s a re
( a) C o n fi n e d t o a d i e l e c tr i c m e d i u m ( b ) C o n fi n e d t o t h e i n n e r c on d u c to r ( c ) N o t C o n fi n e d t o d i e l e c t r i c me d i u m ( d ) C o n fi n e d t o t h e o u t e r c o n d u c t or

1 2. I n a tr a n s m i s s i o n l i n e t h e vol t a ge a n d c u r r e nt s t an d i n g wave s a re
( a) 9 0 0 o u t of p h a s e a l on g t h e l i n e ( b ) 0 0 o u t of p h a s e a l on g t h e l i n e ( c ) 1 80 0 o u t of p h a s e a l on g t h e l i n e ( d ) 2 70 0 o u t of p h a s e a l on g t h e l i n e

1 3. Fo r a l ow l o s s l i n e t h e p h a s e ve l o c i ty i s
( a) I n c r e a s e s w i t h s qu a r e o f f re qu e n c y ( b ) A p p r ox i m a te ly c on s ta nt ( c ) I n c r e a s e s w i t h f re qu e n c y ( d ) D e c r e a s e s w i t h f r e q u e n c y

1 4. A l u m p e d l o ad e d l i n e s b e h ave s as a
( a) B a n d r e j e c t fi l t e r ( b ) B a n d p a s s fi l t e r ( c ) H i g h p a s s fi l t e r
( d ) L ow p as s fi l t e r

1 5. O n e n e p e r i s e qu a l t o
( a) 8 . 86 d B ( b ) 1 0 d B ( c ) 6 . 86 d B ( d ) 8 . 68 d B


1 6. t h e r e fl e c t io n c o e ffi c i e nt f o r a s h o rt c i r c u i t e d t r an s m i s s i on l i n e i s
( a) I n fi n i ty ( b ) - 1 ( c ) Z e ro ( d ) + 1


1 7. A λ / 4 l i n e m ay b e c on s i d e re d a s
( a) Vo l t ag e i nve r t e r ( b ) Powe r i nve r t e r ( c ) C u r r e nt i nve r t e r
( d ) I m p e d an c e i nve r t e r

1 8. T h e u p p e r h a l f o f th e s m i t h ch a r t r e p re s e nt s
( a) + j x ( b ) ± j x ( c ) r ( d ) - j x

1 9. I n a s t u b m at ch i n g i t i s m o re c o nve n i e nt t o s o l ve t h e p r o b l e m u s i n g
( a) I m p e d an c e ( b ) R e ac ta n c e ( c ) A d m i t t an c e ( d ) R e s i s t a n c e

2 0. I f S W R = 1 t h e n t h e r e fl e c t i on c o e ffi c i e nt i s
( a) T wo ( b ) I n fi n i ty ( c ) O n e ( d ) Z e ro


D A A B C B A A C D A A B D D D D A C D

EMWT ONLINE 2

1 . T h e u n i t f o r s u r f a c e c u rr e nt
( a) A m p e r e / m ( b ) a m p e r e /m 3 ( c ) A m p e r e ( d ) A m p e r e / m 2

2 . A s p e r t h e b ou n d a r y c o n d i ti o n ( a) T h e t an g e nti a l c om p o n e nt s o f E i s c ont i nu ou s a c ro s s t h e b o u n d a ry. ( b ) T h e n or m a l c o m p o n e nt s of E i s c o nt i nu o u s ac r o s s th e b o u n d ar y. ( c ) T h e t an g e nti a l c om p o n e nt s o f D i s c o nt i nu o u s ac r o s s th e b o u n d ar y. ( d ) T h e n or m a l c o m p o n e nt s of H i s c o nti nu o u s a c r o s s t h e b ou n d a r y

3 . T h e To t al i nt e r n a l r e fl e c t i o n c a n t a ke s p l a c e ( a) I f t h e wave tr ave l s f r o m R ar e r t o D e n s e r m e d i u m ( b ) I f t h e wave tr ave l s f r o m R ar e r t o R ar e r m e d i u m ( c ) I f t h e wave tr ave l s f r o m D e n s e r to R ar e r m e d i u m ( d ) I f t h e wave tr ave l s f r o m D e n s e r to D e n s e r m e d i u m

4 . . E l e c t ri c an d m ag n e t i c fi e l d s w h i ch ar e p ar a l l e l ( a) C o n s t i t u te a p owe r fl ow ( b ) D o n ot c on s ti t u t e a ny p owe r fl ow ( c ) C o n s t i t u te i n fi n i t e p owe r fl ow ( d ) C o n s t i t u te u n i t m a gn i t u d e p owe r fl ow

5 . A u n i f o r m p l an e wave t r ave l i n g i n ai r w i t h a p owe r d e n s i ty of 2W / m 2 . T h e n t h e e l e c t ri c fi e l d s t r e n gt h o f t h e wave i s ( a) η 0 / 2 ( b ) 2 s q r t ( η 0 ) ( c ) S q r t ( 2 η 0 ) ( d ) 2 η 0

6 . T h e p r op a ga t i on c on s ta nt r f o r a wave w i t ho u t a t te nu a t i on ( a) γ = I / j β ( b ) I γ I = β ( c ) γ = ss ( d ) I γ I = j ss

7 . Fo r a z d i r e c te d gu i d e d wave b e twe e n p ar a l l e l c o n d u c t i n g p l an e s , t h e s t an d i n g wave d i s tr i b u t i o n ac ro s s th e gu i d e i n ( a) Z - d i re c ti o n ( b ) Y a n d Z d i re c ti o n s ( c ) Y - d i r e c t i on ( d ) X - d i r e c t i o n

8 . C u t - o ff f r e qu e n c y i s a f r e q u e n c y b e l ow w h i ch ( a) β = 0 ( b ) β = α = 0 ( c ) Z g = 0 ( d ) α = 0

9 . At te nu a t i on f ac to r f o r a T E M wave i s p r o p or t i o n al to ( a) Fr e q u e n c y ( b ) Z 0 ( c ) C o n d u c t i vi ty ( d ) S q r t( Fr e q u e n c y )

1 0. W h e n f re qu e n c y ap p r o ach i n g i n fi n i ty, th e wave i m p e d an c e o f T E an d T M wave s b e twe e n p ar al l e l c o n d u c t i n g p l at e s ( a) A p p r oa ch e s z e r o ( b ) A p p r oa ch e s 1 / η ( c ) A p p r oa ch e s η ( d ) A p p r oa ch e s i n fi n i ty

1 1. I n a c oa x i al t ra n s m i s s i on l i n e e l e c tr i c an d m ag n e t i c fi e l d s a re ( a) N o t C o n fi n e d t o d i e l e c t r i c me d i u m ( b ) C o n fi n e d t o a d i e l e c tr i c m e d i u m ( c ) C o n fi n e d t o t h e o u t e r c o n d u c t or ( d ) C o n fi n e d t o t h e i n n e r c on d u c to r

1 2. I n a t r a n s m i s s i o n l i n e w h e n t e r m i n at i o n i m p e d a n c e i s e q u a l t o ch ar a c t e ri s ti c i m p e d a n c e of th a t l i n e t h e n th e r e fl e c t i o n c o e ffi c i e nt i s
( a) U n i ty ( b ) E q u a l t o t ra n s m i s s i on c o e ffi c i e nt ( c ) Z e ro ( d ) I n fi n i ty

1 3. Fo r a l o s s l e s s l i n e t h e l i n e ch ar a c t e r i s t i c s r e p e at f or e ve r y ( a) 3 λ / 4 ( b ) λ / 2 ( c ) λ ( d ) λ / 4

1 4. H y s t e r e s i s an d e d d y c u r r e nt l o s s e s i n l o ad i n g c oi l s l e ad s t o ( a) I n c r e a s e i n R
( b ) I n c r e a s e i n L ( c ) D e c r e a s e i n L ( d ) D e c r e a s e i n R

1 5. A t r a n s m i s s i o n l i n e op e ra t i n g at 2 M H z h as vol t ag e re fl e c t i on c o e ffi c i e nt o f 0 . 5 . t h e n V S W R i s ( a) 2 ( b ) 4 ( c ) 3 ( d ) 1

1 6. T h e i n c i d e nt p owe r i s f u l l y ab s or b e d by t h e l o ad i f ( a) Z L = 0 ( b ) Z L = Z 0 ( c ) Z L  = Z 0 ( d ) Z L = i n fi n i ty

1 7. A λ / 4 l i n e m ay b e c on s i d e re d as ( a) Vo l t ag e i nve r t e r ( b ) C u r r e nt i nve r t e r ( c ) Powe r i nve r t e r ( d ) I m p e d an c e i nve r t e r

1 8. A c om p l e t e r e vo l u t i on ar o u n d t h e s m i t h ch ar t r e p r e s e nt s a d i s t an c e o f ( a) λ / 2 o n t h e l i n e ( b ) λ / 4 o n t h e l i n e ( c ) λ o n t h e l i n e ( d ) λ / 8 o n t h e l i n e

1 9. A s h or t c i r c u i t e d s t u b i s or d i n a ri l y p re f e r re d t o an op e n c i r c u i t e d s t u b b e c a u s e ( a) I t s l e n gt h i s s m a l l . ( b ) I t h a s h i gh e r l os s o f e n e r g y d u e to r a d i at i o n ( c ) I t h a s c om p l e te l os s o f e n e r gy d u e t o ra d i a ti o n
( d ) I t h a s l owe r l o s s of e n e r g y d u e t o r a di a t i on


2 0. A l o s s l e s s l i n e h a s Z 0 = 50 o h m s . I f i t i s c on n e c t e d t o a l oa d o f Z L = ( 50 /( 2 +j 2) ) o h m s . T h e n th e n or m a l i z e d a d m i tt a n c e i s ( a) 1 /( 2 +j 2 ) ( b ) 1 /( 2 - j 2 ) ( c ) ( 2- j 2 ) ( d ) ( 2+ j 2 )

AACBB BBDAD CBCBA CBDADD

About Me