1 . T h e u n i t f o r s u r f a c e c u rr e nt
( a) A m p e r e / m ( b ) a m p e r e /m 3 ( c ) A m p e r e ( d ) A m p e r e / m 2
2 . A s p e r t h e b ou n d a r y c o n d i ti o n ( a) T h e t an g e nti a l c om p o n e nt s o f E i s c ont i nu ou s a c ro s s t h e b o u n d a ry. ( b ) T h e n or m a l c o m p o n e nt s of E i s c o nt i nu o u s ac r o s s th e b o u n d ar y. ( c ) T h e t an g e nti a l c om p o n e nt s o f D i s c o nt i nu o u s ac r o s s th e b o u n d ar y. ( d ) T h e n or m a l c o m p o n e nt s of H i s c o nti nu o u s a c r o s s t h e b ou n d a r y
3 . T h e To t al i nt e r n a l r e fl e c t i o n c a n t a ke s p l a c e ( a) I f t h e wave tr ave l s f r o m R ar e r t o D e n s e r m e d i u m ( b ) I f t h e wave tr ave l s f r o m R ar e r t o R ar e r m e d i u m ( c ) I f t h e wave tr ave l s f r o m D e n s e r to R ar e r m e d i u m ( d ) I f t h e wave tr ave l s f r o m D e n s e r to D e n s e r m e d i u m
4 . . E l e c t ri c an d m ag n e t i c fi e l d s w h i ch ar e p ar a l l e l ( a) C o n s t i t u te a p owe r fl ow ( b ) D o n ot c on s ti t u t e a ny p owe r fl ow ( c ) C o n s t i t u te i n fi n i t e p owe r fl ow ( d ) C o n s t i t u te u n i t m a gn i t u d e p owe r fl ow
5 . A u n i f o r m p l an e wave t r ave l i n g i n ai r w i t h a p owe r d e n s i ty of 2W / m 2 . T h e n t h e e l e c t ri c fi e l d s t r e n gt h o f t h e wave i s ( a) η 0 / 2 ( b ) 2 s q r t ( η 0 ) ( c ) S q r t ( 2 η 0 ) ( d ) 2 η 0
6 . T h e p r op a ga t i on c on s ta nt r f o r a wave w i t ho u t a t te nu a t i on ( a) γ = I / j β ( b ) I γ I = β ( c ) γ = ss ( d ) I γ I = j ss
7 . Fo r a z d i r e c te d gu i d e d wave b e twe e n p ar a l l e l c o n d u c t i n g p l an e s , t h e s t an d i n g wave d i s tr i b u t i o n ac ro s s th e gu i d e i n ( a) Z - d i re c ti o n ( b ) Y a n d Z d i re c ti o n s ( c ) Y - d i r e c t i on ( d ) X - d i r e c t i o n
8 . C u t - o ff f r e qu e n c y i s a f r e q u e n c y b e l ow w h i ch ( a) β = 0 ( b ) β = α = 0 ( c ) Z g = 0 ( d ) α = 0
9 . At te nu a t i on f ac to r f o r a T E M wave i s p r o p or t i o n al to ( a) Fr e q u e n c y ( b ) Z 0 ( c ) C o n d u c t i vi ty ( d ) S q r t( Fr e q u e n c y )
1 0. W h e n f re qu e n c y ap p r o ach i n g i n fi n i ty, th e wave i m p e d an c e o f T E an d T M wave s b e twe e n p ar al l e l c o n d u c t i n g p l at e s ( a) A p p r oa ch e s z e r o ( b ) A p p r oa ch e s 1 / η ( c ) A p p r oa ch e s η ( d ) A p p r oa ch e s i n fi n i ty
1 1. I n a c oa x i al t ra n s m i s s i on l i n e e l e c tr i c an d m ag n e t i c fi e l d s a re ( a) N o t C o n fi n e d t o d i e l e c t r i c me d i u m ( b ) C o n fi n e d t o a d i e l e c tr i c m e d i u m ( c ) C o n fi n e d t o t h e o u t e r c o n d u c t or ( d ) C o n fi n e d t o t h e i n n e r c on d u c to r
1 2. I n a t r a n s m i s s i o n l i n e w h e n t e r m i n at i o n i m p e d a n c e i s e q u a l t o ch ar a c t e ri s ti c i m p e d a n c e of th a t l i n e t h e n th e r e fl e c t i o n c o e ffi c i e nt i s
( a) U n i ty ( b ) E q u a l t o t ra n s m i s s i on c o e ffi c i e nt ( c ) Z e ro ( d ) I n fi n i ty
1 3. Fo r a l o s s l e s s l i n e t h e l i n e ch ar a c t e r i s t i c s r e p e at f or e ve r y ( a) 3 λ / 4 ( b ) λ / 2 ( c ) λ ( d ) λ / 4
1 4. H y s t e r e s i s an d e d d y c u r r e nt l o s s e s i n l o ad i n g c oi l s l e ad s t o ( a) I n c r e a s e i n R
( b ) I n c r e a s e i n L ( c ) D e c r e a s e i n L ( d ) D e c r e a s e i n R
1 5. A t r a n s m i s s i o n l i n e op e ra t i n g at 2 M H z h as vol t ag e re fl e c t i on c o e ffi c i e nt o f 0 . 5 . t h e n V S W R i s ( a) 2 ( b ) 4 ( c ) 3 ( d ) 1
1 6. T h e i n c i d e nt p owe r i s f u l l y ab s or b e d by t h e l o ad i f ( a) Z L = 0 ( b ) Z L = Z 0 ( c ) Z L = Z 0 ( d ) Z L = i n fi n i ty
1 7. A λ / 4 l i n e m ay b e c on s i d e re d as ( a) Vo l t ag e i nve r t e r ( b ) C u r r e nt i nve r t e r ( c ) Powe r i nve r t e r ( d ) I m p e d an c e i nve r t e r
1 8. A c om p l e t e r e vo l u t i on ar o u n d t h e s m i t h ch ar t r e p r e s e nt s a d i s t an c e o f ( a) λ / 2 o n t h e l i n e ( b ) λ / 4 o n t h e l i n e ( c ) λ o n t h e l i n e ( d ) λ / 8 o n t h e l i n e
1 9. A s h or t c i r c u i t e d s t u b i s or d i n a ri l y p re f e r re d t o an op e n c i r c u i t e d s t u b b e c a u s e ( a) I t s l e n gt h i s s m a l l . ( b ) I t h a s h i gh e r l os s o f e n e r g y d u e to r a d i at i o n ( c ) I t h a s c om p l e te l os s o f e n e r gy d u e t o ra d i a ti o n
( d ) I t h a s l owe r l o s s of e n e r g y d u e t o r a di a t i on
2 0. A l o s s l e s s l i n e h a s Z 0 = 50 o h m s . I f i t i s c on n e c t e d t o a l oa d o f Z L = ( 50 /( 2 +j 2) ) o h m s . T h e n th e n or m a l i z e d a d m i tt a n c e i s ( a) 1 /( 2 +j 2 ) ( b ) 1 /( 2 - j 2 ) ( c ) ( 2- j 2 ) ( d ) ( 2+ j 2 )
AACBB BBDAD CBCBA CBDADD
Monday, April 14, 2008
Subscribe to:
Post Comments (Atom)
About Me
- Be Innovative
- i am simple...........
No comments:
Post a Comment