1 . At t h e d i e l e c t ri c c o n d u c t or i nt e r f a c e
( a) T h e H i s h al f of t h e i n c i d e nt fi e l d ( b ) T h e E i s d ou b l e o f t h e i n c i d e nt fi e l d ( c ) T h e E i s h al f o f t h e i n c i d e nt fi e l d
( d ) T h e H i s d ou b l e of t h e i n c i d e nt fi e l d
2 . Fo r n o r m al i n c i d e n c e , th e an g l e of i n c i d e n c e i s
( a) 1 80 0 ( b ) 4 5 0 ( c ) 0 0 ( d ) 9 0 0
3 . Fo r t o ta l i nt e r n al r e fl e c t i on t h e fi e l d s i n t h e s e c o n d m e d i u m
( a) I n fi n i t e at t h e i nt e r f a c e ( b ) D o n ot van i s h ( c ) Va n i s h c om p l e t e l y ( d ) N o ch a n ge w i t h a n gl e of i n c i d e n c e
4 . T h e s u r f a c e r e s i s t an c e
( a) I n c r e a s e s w i t h c on d u c t i v i ty ( b ) D e c r e a s e s w i t h f r e q u e n c y ( c ) D e c r e a s e s w i t h f r e q u e n c y an d I n c r e as e s w i th c o n d u c t i vi ty
( d ) I n c r e a s e s w i t h f re q u e n c y
5 . I n a re gi o n E = 1 00 ( j a x + 2 a y - j a z ) e j ω t a n d H = ( - a x + j a y + a z ) e j ω t . T h e n ave r ag e p owe r fl ow d e n s i ty i s
( a) 5 0( a x + a z ) ( b ) 1 50 ( a x + a z ) ( c ) - 5 0( a x + a z ) ( d ) - 1 50 ( a x + a z )
6 . I f t h e p r o p ag at i o n c o n s t ant i s a r e al q u ant i ty th e n t h e wave
( a) I n c r e a s e s e x p o n e nti a l l y ( b ) I n c r e a s e s l i n e a r l y ( c ) D e c r e a s e s e x p o ne nt i a l l y ( d ) D e c r e a s e s l i n e a rl y
7 . T h e l owe s t or d e r m o d e of T E wave s b e twe e n p a ra l l e l c on d u c to r s
( a) T E 0 0 ( b ) T E 1 1 ( c ) T E 1 2 ( d ) T E 1 0
8 . G r o u p ve l o c i ty , p h as e ve l o c i ty an d f r e e s p ac e ve l o c i ty ar e r e l a t e d by
( a) v 2 0 = v g v p ( b ) v 0 = v g / v p ( c ) v 0 = v g v p ( d ) v 2 0 = 1 /v g v p
9 . T h e c u t - o ff wave l e n g th f or a T E M wave i s
( a) H i g h ( b ) I n fi n i ty ( c ) Z e ro ( d ) L ow
1 0. I f a d i e l e c t r i c o f ∈ r = 4 i s fi l l e d i n b e twe e n p a ra l l e l p l at e wave gu i d e t h e n t h e ve l o c i ty o f wave p ro p a ga t i on i s
( a) 6 x1 0 8 m / s ( b ) 1 . 5 x1 0 8 m / s ( c ) 3 x1 0 8 m / s ( d ) 4 . 5 x1 0 8 m / s . .
1 1. I n s ol v i n g t r an s m i s s i o n l i n e p r o b l e m s we u s e t h e f o l l ow i n g c i r c u i t q u ant i t i e s
( a) D a n d B ( b ) E an d H ( c ) V a n d I ( d ) J a n d E
1 2. I n a t r a n s m i s s i o n l i n e w h e n t e r m i n at i o n i m p e d a n c e i s e q u a l t o ch ar a c t e ri s ti c i m p e d a n c e of th a t l i n e t h e n th e r e fl e c t i o n c o e ffi c i e nt i s
( a) Z e ro ( b ) E q u a l t o t ra n s m i s s i on c o e ffi c i e nt ( c ) U n i ty ( d ) I n fi n i ty
1 3. Fo r a l o s s l e s s l i n e t h e l i n e ch ar a c t e r i s t i c s r e p e at f or e ve r y ( a) λ / 4 ( b ) 3 λ / 4 ( c ) λ ( d ) λ / 2
1 4. Fo r o c e a n c ab l e s t h e ty p e o f l oa d i n g u s e d i s
( a) L u m p e d l oa d i n g ( b ) Pa tch l oa d i n g ( c ) C o nti nu o u s l o ad i n g ( d ) U n m a tch e d l oa d i n g
1 5. O n e n e p e r i s e qu a l t o
( a) 6 . 86 d B ( b ) 1 0 d B ( c ) 8 . 86 d B ( d ) 8 . 68 d B
1 6. T h e S W R of a t ra n s m i s s i on l i n e w h i ch i s t e r m i n a te d w i t h i t s ch ar a c t e r i s t i c i m p e da n c e s g i ve n by
( a) 2 ( b ) i n fi n i ty ( c ) z e r o ( d ) 1
1 7. w h e n th e l e n g t h o f a l i n e i s a n i nt e g ra l mu l t i p l e s of λ / 2 th e n Ta n β l i s e q u a l t o
( a) T wo ( b ) Z e ro ( c ) I n fi n i ty ( d ) U n i ty
1 8. O n a s m i t h ch a r t f o r x =0 c i r c l e s t h e c e nte r i s a t
( a) ( 1, 1 ) ( b ) ( 1, 0 ) ( c ) ( 0 , ∞ ) ( d ) ( 1 , ± ∞ )
1 9. A s tu b w i t h a s h o r t c i r c u i t e d l o ad off e r s
( a) P u r e re s i s t an c e ( b ) C a p ac i ti ve r e a c t a n c e ( c ) I m p e d an c e ( d ) I n d u c t i ve r e a c t an c e
2 0. I f t h e p h a s e c on s t a nt on t h e l i n e i s 2 π r ad / m , th e d i s t a n c e b e twe e n two s u c c e s s i ve m ax i m a i s
( a) 5 0 c m ( b ) 3 0 c m ( c ) 2 0 c m ( d ) 4 0 c m
D C B D B C D A B B C A D C D D B D D A
Monday, April 14, 2008
Subscribe to:
Post Comments (Atom)
About Me
- Be Innovative
- i am simple...........
No comments:
Post a Comment